Abstract:
The electrical connecting element includes an essentially stiff core, essentially mechanically stiff and printed circuit boards and/or high density interconnects with conductor paths serving as interconnects. The core includes two parts (1, 3) that can be fixed to each other. Between the two parts, a cavity (101) can be formed. Components (103) producing a lot of heat or requiring protection from environmental influences can be placed in the cavity.
Abstract:
A semiconductor device comprising: a substrate; first and second interconnection patterns respectively provided on upper and lower surfaces of the substrate; a through-hole electrode extending through the substrate for electrically connecting the first and second interconnection patterns; a semiconductor chip provided on the upper surface of the substrate and electrically connected to the first interconnection pattern; and a resist film covering the second interconnection pattern; the second interconnection pattern comprising a generally round land and a lead interconnection portion extending from the land, the resist film having an opening formed therein for exposing the entire land, the opening having a curved edge surrounding a peripheral edge of the land and a linear edge linearly extending along a boundary between the land and the lead interconnection portion, the exposed land having a solder ball as an external terminal thereon.
Abstract:
A multi-layer printed circuit board on which insulation resin layers and circuit pattern layers are alternatively stacked to form multiple layers, including: an insulation resin layer; a circuit pattern formed at the upper surface of the insulation resin layer; a blind via hole formed penetrating the insulation resin layer and the circuit pattern; a plated layer formed at the upper surface of the circuit pattern, at the inner wall face and the bottom of the blind via hole; an inner lead bump pad formed at the surface of the plated layer which is exposed to the lower surface of the insulation resin layer; and an outer lead bump pad formed on the circuit pattern which is formed at the upper surface of the insulation resin layer, whereby the problem of defective attachment of a bump due to a void present in a blind via hole is eliminated.
Abstract:
A substrate of multilayered structure having a plurality of sets of an insulation layer and a wiring line layer, and having one face for mounting a semiconductor element thereon and the other face on which external connection terminals are to be provided, the face for mounting a semiconductor element being provided with pads to be bonded to an electrode terminal of the semiconductor element, the other face being provided with pads to be bonded to an external connection terminal, such as a terminal formed of a solder ball, and the wiring line layers on both sides of an insulation layer being connected with each other by vias piercing the insulation layer, wherein the surfaces of the pads to be bonded to an electrode terminal of a semiconductor element are flat and are in the same plane. A method of manufacturing such a multilayered substrate is also disclosed.
Abstract:
A multi-layer printed circuit board on which insulation resin layers and circuit pattern layers are alternatively stacked to form multiple layers, including: an insulation resin layer; a circuit pattern formed at the upper surface of the insulation resin layer; a blind via hole formed penetrating the insulation resin layer and the circuit pattern; a plated layer formed at the upper surface of the circuit pattern, at the inner wall face and the bottom of the blind via hole; an inner lead bump pad formed at the surface of the plated layer which is exposed to the lower surface of the insulation resin layer; and an outer lead bump pad formed on the circuit pattern which is formed at the upper surface of the insulation resin layer, whereby the problem of defective attachment of a bump due to a void present in a blind via hole is eliminated.
Abstract:
A method of making a laminated structure includes forming a first lamination having first and second conductive layers having inner and outer surfaces and being spaced apart by a dielectric layer, drilling through the first conductive layer and dielectric layer to form a blind via having a bottom coexistent with the inner surface of the second conductive layer, plating the blind via with a conductive material, and patterning the second conductive layer to form at least one contact pad over the blind via.
Abstract:
A multilayered board is formed by applying a photosensitive insulating resin layer on a laminated plate on which via holes and a circuit pattern are formed, followed by the formation of photoviaholes through the photoprinting method, plating and etching. Then, the multilayered board is adhered to another multilayered board prepared in the same manner through a prepreg layer and a conductive paste while applying heat and pressure to give a multilayer printed wiring board. According to this method, electrical connections between the conductive layer of the upper-most layer and the inner conductive layers, between the inner conductive layers, and between the lower-most conductive layer and the inner conductive layers can be achieved through the photoviaholes and the conductive paste. Therefore, it is not necessary to form through-holes for the electrical connection therebetween. The multilayer printed wiring boards can be substantially improved in the number of layers and wiring density thereof.
Abstract:
A first conductive layer is in contact with a first inter-layer connection conductor and a second inter-layer connection conductor. The first conductive layer has a same composition as the first and second inter-layer connection conductors. At least one first metal foil layer is in contact with a third main surface of the first conductive layer. The at least one first metal foil layer overlaps the first and second inter-layer connection conductors when viewed in a first direction. At least one second metal foil layer overlaps the first and second inter-layer connection conductors when viewed in the first direction, and is electrically connected to the first and second inter-layer connection conductors. The at least one second metal foil layer has a composition different from that of the first conductive layer.
Abstract:
A microelectronic device comprises a first substrate (110) having a first electrically conductive path (111) therein and a second substrate (120) above the first substrate and having a second electrically conductive path (121) therein, wherein the first electrically conductive path and the second electrically conductive path are electrically connected to each other and form a portion of a current loop (131) of an inductor (130).
Abstract:
A manufacturing method of a circuit substrate includes the following steps. The peripheries of two metal layers are bonded to form a sealed area. Two insulating layers are formed on the two metal layers. Two including upper and bottom conductive layers are formed on the two insulating layers. Then, the two insulating layers and the two conductive layers are laminated so that the two metal layers bonded to each other are embedded between the two insulating layers. A part of the two insulating layers and a part of the two conductive layers are removed to form a plurality of blind holes exposing the two metal layers. A conductive material is formed in the blind holes and on the remained two conductive layers. The sealed area of the two metal layers is separated to form two separated circuit substrates.