Abstract:
A ceramic substrate for an electronic part inspecting apparatus that can be manufactured in accordance with predetermined specifications, regardless of the number and location of pins required, relatively quickly and inexpensively is provided. In certain embodiments the ceramic substrate is configured to connect to a probe for inspecting an electronic component, and the ceramic substrate comprises a plurality of vias located in a center area of the ceramic substrate that penetrate through the ceramic substrate in its thicknesswise direction, pads located in an outer periphery that surrounds the center area where the vias are located, the pads being configured to connected to the probes, and a conductive layer located only over the front surface of the ceramic substrate and connects the vias to the respective pads. Certain embodiments comprise a greater number of vias than pins. A method of manufacturing the ceramic substrate is also provided.
Abstract:
Provided are a printed circuit board (PCB) having hexagonally aligned bump pads as a substrate of a semiconductor package, and a semiconductor package including the same. The PCB includes: a PCB body; a bottom metal layer at a bottom of the PCB body; and a top metal layer at a top of the PCB body, and the top metal layer includes: vias vertically connected to the PCB body; bump pads hexagonally aligned in a horizontal direction around the vias; and connection patterns connecting the vias to two or more of the bump pads. Accordingly, the number of bump pads in a unit area of the PCB may be increased.
Abstract:
A light-emitting device capable of ensuring an electric connection between a light-emitting element and an electrode without generating any problem in practical use, by both connecting methods with a solder and a connector, and a lighting device provided with the light-emitting device are provided. The light-emitting device according to the present invention has a plurality of LED chips, and a soldering electrode land and a connector connecting electrode land electrically connected to the chips, on a ceramic substrate. The soldering electrode land is formed of a first conductive material having a function to prevent diffusion to a solder, and the connector connecting electrode land is formed of a second conductive material having a function to prevent oxidation.
Abstract:
A high-frequency signal line includes a dielectric body including a first dielectric layer and one or more other dielectric layers laminated together. A first signal line is provided on a first main surface, which is a main surface located on one side in a direction of lamination, of the first dielectric layer. A second signal line is provided on a second main surface, which is a main surface located on another side in the lamination direction, of the first dielectric layer so as to face the first signal line via the first dielectric layer. The second signal line is electrically connected to the first signal line. A first ground conductor is located on one side in the lamination direction than the first signal line. A second ground conductor is located on another side in the lamination direction than the second signal line.
Abstract:
A method of making an imprinted micro-wire structure includes providing a substrate having an edge area and a central area separate from the edge area and providing a first stamp and a multi-level second stamp. A curable bottom layer and multi-layer are provided on the substrate. A bottom-layer micro-channel is imprinted in the bottom layer. A multi-layer micro-channel and a top-layer micro-channel are imprinted in the multi-layer. Micro-wires are formed in each micro-channel. The bottom-layer micro-wire extends from the central area into the edge area. The multi-layer micro-wire contacts the bottom-layer micro-wire in the edge area. The top-layer micro-wire is over the central area and is separate from the multi-layer micro-wire and the bottom-layer micro-channel. The bottom-layer micro-wire is electrically connected to the multi-layer micro-wire and is electrically isolated from the top-layer micro-wire.
Abstract:
A method of making an imprinted micro-wire structure includes providing a substrate having an edge area and a central area separate from the edge area and providing first, second, and third different stamps. A curable bottom, connecting layer, and top layer are formed on the substrate. A bottom-layer micro-channel is imprinted in the bottom layer in the central area and the edge area, a connecting-layer micro-channel is imprinted in the connecting layer in the edge area over the bottom-layer micro-channel, an edge micro-channel is imprinted in the top layer in the edge area over the connecting-layer micro-channel, and top-layer micro-channels are imprinted in the top layer over the central area. Micro-wires are formed in each micro-channel. The bottom-layer micro-wire in the central area is electrically connected to the edge micro-wire in the edge area and is electrically isolated from the top-layer micro-wire.
Abstract:
A circuit module includes a wiring substrate, an electronic component, a sealing layer, and a conductive shield. The wiring substrate has a mount surface. The electronic component is mounted on the mount surface. The sealing layer is formed of an insulating material, covers the electronic component, and has a first surface and a second surface, the first surface being opposite to the mount surface and having a first sealing area and a second sealing area, the second sealing area projecting from the first sealing area to an opposite side of the mount surface, the second surface being connected to the mount surface and the first surface. The conductive shield covers at least the second surface and the first sealing area of the first surface.
Abstract:
A carrier substrate includes an insulation layer, conductive towers and a circuit structure layer. A diameter of each of the conductive towers is increased gradually from a top surface to a bottom surface, and the conductive towers include first conductive towers and second conductive towers surrounding the first conductive towers. The circuit structure layer is disposed on the insulation layer and includes at least one dielectric layer, at least two circuit layers and first conductive vias. Each of the second conductive towers correspondingly connects to at least two of the first conductive vias, and each of the first conductive towers correspondingly connects to one of the first conductive vias. An interface exists between the first conductive vias and the first and the second conductive towers.
Abstract:
A light-emitting device capable of ensuring an electric connection between a light-emitting element and an electrode without generating any problem in practical use, by both connecting methods with a solder and a connector, and a lighting device provided with the light-emitting device are provided. The light-emitting device according to the present invention has a plurality of LED chips, and a soldering electrode land and a connector connecting electrode land electrically connected to the chips, on a ceramic substrate. The soldering electrode land is formed of a first conductive material having a function to prevent diffusion to a solder, and the connector connecting electrode land is formed of a second conductive material having a function to prevent oxidation.
Abstract:
A method for forming an electrical structure. The electrical structure comprises an interconnect structure and a substrate. The substrate comprises an electrically conductive pad and a plurality of wire traces electrically connected to the electrically conductive pad. The electrically conductive pad is electrically and mechanically connected to the interconnect structure. The plurality of wire traces comprises a first wire trace, a second wire trace, a third wire trace, and a fourth wire trace. The first wire trace and second wire trace are each electrically connected to a first side of the electrically conductive pad. The third wire trace is electrically connected to a second side of the electrically conductive pad. The fourth wire trace is electrically connected to a third side of said first electrically conductive pad. The plurality of wire traces are configured to distribute a current.