Abstract:
A printed circuit board (PCB) assembly is disclosed, which includes a first PCB on which a plurality of first electrode terminals are arranged at intervals from one another; a second PCB on which a plurality of second electrode terminals respectively connected with the first electrode terminals are arranged at intervals from one another; and separation preventing member which prevents the first and the second electrode terminals from deviating from their correct positions when the first and the second electrode terminals are ultrasonically-welded to each other. Accordingly, lateral movement of the first and the second PCBs relative to each other is restricted owing to the separation preventing member, the plurality of first electrode terminals and second electrode terminals can be bonded to each other without deviating from their correct positions.
Abstract:
A method of manufacturing a wiring substrate having a wiring layer formation step that includes: a first surface processing step in which surface processing is performed on a film formation area of a substrate; a wiring formation step in which a wiring pattern is formed by placing a first liquid material on the film formation area; a second surface processing step in which surface processing is once again performed on the film formation area; and an insulating film formation step in which an insulating film is formed by placing a second liquid material in gaps in the wiring pattern, wherein an affinity between the second liquid material and the film formation area in the insulating film formation step is greater than an affinity between the first liquid material and the film formation area in the wiring formation step.
Abstract:
A method for manufacturing a circuit device, which is suitable for connecting a plurality of laminated wiring layers to each other through an insulating layer, is provided. In a method for manufacturing a hybrid integrated circuit device of the present invention, a first wring layer is formed by laminating a first conductive film on a first insulating layer, and patterning the first conductive film. In the first wiring layer, a first connection part which is protruded in a thickness direction is formed. Moreover, the first wiring layer including the first connection part is covered with a second insulating layer. The second insulating layer is formed of a first resin film and a second resin film. The second resin film contains fewer inorganic fillers than the first resin film. Thus, there is an advantage that a through-hole can be easily formed.
Abstract:
A circuit substrate, which supports optically and electrically conveyed signals, and method for forming the same are provided. The circuit substrate includes a substrate upon which one or more electrically conductive traces are formed, where the electrically conductive traces have areas of isolation between adjacent ones of the electrically conductive traces. The circuit substrate further includes one or more optical waveguides, where the one or more optical waveguides are in the same plane as the one or more electrically conductive traces. The optical waveguides are formed using an optically transmissive material, which is deposited in the areas of isolation between the electrical traces.
Abstract:
Systems and methods for simultaneously partitioning a plurality of via structures into electrically isolated portions by using plating resist within a PCB stackup are disclosed. Such via structures are made by selectively depositing plating resist in one or more locations in a sub-composite structure. A plurality of sub-composite structures with plating resist deposited in varying locations are laminated to form a PCB stackup of a desired PCB design. Through-holes are drilled through the PCB stackup through conductive layers, dielectric layers and through the plating resist. Thus, the PCB panel has multiple through-holes that can then be plated simultaneously by placing the PCB panel into a seed bath, followed by immersion in an electroless copper bath. Such partitioned vias increase wiring density and limit stub formation in via structures. Such partitioned vias allow a plurality of electrical signals to traverse each electrically isolated portion without interference from each other.
Abstract:
In one embodiment, a package-to-package stack is assembled comprising a first integrated circuit package, and a second integrated circuit package which are mechanically and electrically connected using an interposer. In one embodiment, the interposer 106 includes columnar interconnects which may be fabricated by etching a conductive member such as copper foil, for example. In one application, the pitch or center to center spacing of the columnar interconnects may be defined by masking techniques to provide an interconnect pitch suitable for a particular application. In yet another aspect, etching rates may be controlled to provide height to width aspect ratios of the columnar interconnects which are suitable for various applications.
Abstract:
An article comprises first and second electrically responsive elements having a cutting plane which is perpendicular to an x-dimension for separating the elements. The conductive elements of the conductive layers are alternatingly exposed to one of the two opposing faces of the conductive element.
Abstract:
A printed circuit board having embedded capacitors includes a double-sided copper-clad laminate including first circuit layers formed in the outer layers thereof, the first circuit layers including bottom electrodes and circuit patterns; dielectric layers formed by depositing alumina films on the first circuit layers by atomic layer deposition; second circuit layers formed on the dielectric layers and including top electrodes and circuit patterns; one-sided copper-clad laminates formed on the second circuit layers; blind via-holes and through-holes formed in predetermined portions of the one-sided copper-clad laminates; and plating layers formed in the blind via-holes and the through-holes. The manufacturing method of the printed circuit board is also disclosed.
Abstract:
An inductor element containing circuit board of the present invention comprises a plurality of conductive layers, and a conductor having an inductor function (inductor conductor segment) in one or more of the conductive layers, wherein at least part of the inductor conductor segment is made thicker than other conductors disposed within the circuit board. The at least part of the inductor conductor segment extends through an insulating layer disposed between the conductive layers, or is embedded in the insulating layer, wherein the part of the inductor conductor segment has a thickness one-half or more the thickness of the insulating layer. A power amplifier module of the present invention comprises the multi-layer circuit board, a semiconductor amplifier fabricated in the multi-layer circuit board, and an impedance matching circuit coupled to the output of the semiconductor amplifier. The impedance matching circuit has a portion thereof formed of the inductor conductor segment.
Abstract:
The present invention provides a method of manufacturing a multilayer wiring substrate, which can preserve the dimensional stability of a conductor pattern at a fine pitch, solve the restriction on a process from the viewpoint of material selection, and further reduce a manufacturing cost, and a multilayer wiring substrate. A second wiring substrate formed on a supporting sheet made of metal and an adhesive layer are partially stacked on a predetermined region of a first wiring substrate by using the supporting sheet. After the lamination of the second wiring substrate, the supporting sheet is finally etched and removed. The second wiring substrate is stacked only on the portion required to be multilayered on the first wiring substrate to thereby reduce the amount of the construction material of the second wiring substrate.