Abstract:
The present invention enables snap-shot spectral imaging of a scene at high image generation rates. Light from the scene is processed through an optical system that comprises a coded-aperture. The optical system projects a plurality of images, each characterized by only one of a plurality of spectral components, onto a photodetector array. The plurality of images is interspersed on the photodetector array, but no photodetector receives light characterized by more than one of the plurality of spectral components. As a result, computation of the spatio-spectral datacube that describes the scene is simplified. The present invention, therefore, enables rapid spectral imaging of the scene.
Abstract:
A spectrometer includes a micro-ring grating device having coaxially-aligned ring gratings for diffracting incident light onto a target focal point, a detection device for detecting light intensity, one or more actuators, and an adjustable aperture device defining a circular aperture. The aperture circumscribes a target focal point, and directs a light to the detection device. The aperture device is selectively adjustable using the actuators to select a portion of a frequency band for transmission to the detection device. A method of detecting intensity of a selected band of incident light includes directing incident light onto coaxially-aligned ring gratings of a micro-ring grating device, and diffracting the selected band onto a target focal point using the ring gratings. The method includes using an actuator to adjust an aperture device and pass a selected portion of the frequency band to a detection device for measuring the intensity of the selected portion.
Abstract:
A method of generating a design pattern for a spatial radiation modulator to encode two or more selected spectral components in one or more spectral ranges for the chemometric analysis of a group of analytes. The method includes obtaining a corresponding spectrum for each of the analytes, defining a set of initial spectral windows, constructing a chemometric matrix to relate concentrations of the analytes to intensities of the spectral components, deriving optimized spectral windows, and translating the center wavelength and the bandwidth of each of the optimized spectral windows into a corresponding optimized annular region on the modulator.
Abstract:
A class of aperture coded spectrometer is optimized for the spectral characterization of diffuse sources. The instrument achieves high throughput and high spatial resolution by replacing the slit of conventional dispersive spectrometers with a spatial filter or mask. A number of masks can be used including Harmonic masks, Legendre masks, and Hadamard masks.
Abstract:
A class of aperture coded spectrometer is optimized for the spectral characterization of diffuse sources. The instrument achieves high throughput and high spatial resolution by replacing the slit of conventional dispersive spectrometers with a spatial filter or mask. A number of masks can be used including Harmonic masks, Legendre masks, and Hadamard masks.
Abstract:
An analyzer useful in determining the presence of an analyte using a diffraction based sensing device and methods and systems using this device. The present invention may be used with a variety of different diffraction-based diagnostic methods and systems. The analyzer enhances the accuracy and/or usefulness of these devices in detecting analytes, while providing more ease-of-use and convenience to the user. The analyzer may include a light source, a photodiode, a microprocessor and a display system for informing the user of the result. Other features include mirrors, lenses, a sample holder, and a mask for blocking out some light. The analyzer and related method and system may be used in a large number of environments, including commercial, professional, and individual.
Abstract:
Method and apparatus for analyzing radiation using analyzers and encoders employing the spatial modulation of radiation dispersed by wavelength or imaged along a line.
Abstract:
Spectral imaging apparatus and methods are disclosed. In one embodiment, a spectral imaging apparatus includes a spectral imaging apparatus includes a diffraction grating having one or more entrance apertures formed therein, a collecting reflecting element for reflecting said incident radiation to a diffractive surface of said diffraction grating, and a reimaging system adapted to provide a spectral image at a focal surface. The collecting reflecting element may include an aspherically-shaped portion, and the entrance apertures may be distributed along a straight or a non-straight axis. Alternately, optical fibres may be disposed in the entrance apertures. The spectral image provides a spectrum of radiation such that a first portion of the spectrum of radiation from a first region can be distinguished from a second portion of the spectrum of radiation from a second region.
Abstract:
A multi-slit spectrometer is combined with a two-dimensional detector array to enable simultaneous spectral analysis of several objects, improving the signal-to-noise ratio of multispectral imagery. The multi-slit spectrometer includes a multi-slit structure defining a plurality of parallel thin slits, and a first lens for directing object light onto the multi-slit structure. A second lens collimates and directs light which has passed through the slits of the multi-slit structure onto a light dispersing element such as a dispersing prism or a diffraction grating. A third lens focuses light which has passed through the light dispersing element onto the two-dimensional detector array at an image plane. A two dimensional detector array of detector elements is placed at the image plane. The slits are separated by a separation distance equal to an integral multiple of the detector width dimension, where the multiple is equal to (N times the number of slits) plus or minus one, where N is an integer. In an airborne sensor, a mirror which rotates at an angular velocity related to the velocity of the airborne platform directs object light onto the first lens, freezing the image from one or more objects onto the multi-slit structure for an integration time.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like.