Abstract:
A microelectromechanical system (MEMS) switch having a high-resonance-frequency beam is disclosed. The MEMS switch includes first and second spaced apart electrical contacts, and an actuating electrode. The beam is adapted to establish contact between the electrodes via electrostatic deflection of the beam as induced by the actuating electrode. The beam may have a cantilever or bridge structure, and may be hollow or otherwise shaped to have a high resonant frequency. Methods of forming the high-speed MEMS switch are also disclosed.
Abstract:
A microelectromechanical system switch may include a relatively stiff cantilevered beam coupled, on its free end, to a more compliant or flexible extension. A contact may be positioned at the free end of the cantilevered beam. The extension reduces the actuation voltage that is needed and compensates for the relative stiffness of the cantilevered beam in closing the switch. In opening the switch, the stiffness of the cantilevered beam may advantageously enable quicker operation which may be desirable in higher frequency situations.
Abstract:
A microelectromechanical system (MEMS) switch having a high-resonance-frequency beam is disclosed. The MEMS switch includes first and second spaced apart electrical contacts, and an actuating electrode. The beam is adapted to establish contact between the electrodes via electrostatic deflection of the beam as induced by the actuating electrode. The beam may have a cantilever or bridge structure, and may be hollow or otherwise shaped to have a high resonant frequency. Methods of forming the high-speed MEMS switch are also disclosed.
Abstract:
A high temperature resist process is combined with microlithographic patterning for the production of materials, such as diamond films, that require a high temperature deposition environment. A conventional polymeric resist process may be used to deposit a pattern of high temperature resist material. With the high temperature resist in place and the polymeric resist removed, a high temperature deposition process may proceed without degradation of the resist pattern. After a desired film of material has been deposited, the high temperature resist is removed to leave the film in the pattern defined by the resist. For diamond films, a high temperature silicon nitride resist can be used for microlithographic patterning of a silicon substrate to provide a uniform distribution of diamond nucleation sites and to improve diamond film adhesion to the substrate. A fine-grained nucleation geometry, established at the nucleation sites, is maintained as the diamond film is deposited over the entire substrate after the silicon nitride resist is removed. The process can be extended to form microstructures of fine-grained polycrystalline diamond, such as rotatable microgears and surface relief patterns, that have the desirable characteristics of hardness, wear resistance, thermal conductivity, chemical inertness, anti-reflectance, and a low coefficient of friction.
Abstract:
In an embodiment, a method for fabricating a Microelectromechanical System (MEMS) microphone includes depositing, on a frontside of a wafer, a first oxide layer over a silicon nitride thin film and over and adjacent the wafer, wherein the silicon nitride thin film is disposed over the wafer, depositing a membrane protection layer over the first oxide layer between a first side of a first cavity formed in the wafer and a second side of a second cavity formed in the wafer, depositing a second oxide layer over and adjacent the membrane protection layer, depositing a first membrane nitride layer over the second oxide layer, depositing a membrane polysilicon layer over the first membrane nitride layer, depositing a second membrane nitride layer over the membrane polysilicon layer, depositing a third oxide layer over the second membrane nitride layer and depositing a fourth oxide layer over the third oxide layer.
Abstract:
The present disclosure involves forming a method of fabricating a Micro-Electro-Mechanical System (MEMS) device. A plurality of openings is formed in a first side of a first substrate. A dielectric layer is formed over the first side of the substrate. A plurality of segments of the dielectric layer fills the openings. The first side of the first substrate is bonded to a second substrate that contains a cavity. The bonding is performed such that the segments of the dielectric layer are disposed over the cavity. A portion of the first substrate disposed over the cavity is transformed into a plurality of movable components of a MEMS device. The movable components are in physical contact with the dielectric the layer. Thereafter, a portion of the dielectric layer is removed without using liquid chemicals.
Abstract:
A method for producing thin MEMS wafers including: (A) providing an SOI wafer having an upper silicon layer, a first SiO2 layer and a lower silicon layer, the first SiO2 layer being situated between the upper silicon layer and the lower silicon layer, (B) producing a second SiO2 layer on the upper silicon layer, (C) producing a MEMS structure on the second SiO2 layer, (D) introducing clearances into the lower silicon layer down to the first SiO2 layer, (E) etching the first SiO2 layer and thus removing the lower silicon layer.
Abstract:
A method for manufacturing a structure comprises a) providing a donor substrate comprising front and rear faces; b) providing a support substrate; c) forming an intermediate layer on the front face of the donor substrate or on the support substrate; d) assembling the donor and support substrates with the intermediate layer therebetween; e) thinning the rear face of the donor substrate to form a useful layer of a useful thickness having a first face disposed on the intermediate layer and a second free face; and wherein the donor substrate comprises a buried stop layer and a fine active layer having a first thickness less than the useful thickness, between the front face of the donor substrate and the stop layer; and after step e), removing, in first regions of the structure, a thick active layer delimited by the second free face of the useful layer and the stop layer.
Abstract:
Membrane transducer structures and thin-film encapsulation methods for manufacturing the same are provided. In one example, the thin film encapsulation methods may be implemented to co-integrate processes for thin-film encapsulation and formation of microelectronic devices and microelectromechanical systems (MEMS) that include the membrane transducers.
Abstract:
Membrane transducer structures and thin-film encapsulation methods for manufacturing the same are provided. In one example, the thin film encapsulation methods may be implemented to co-integrate processes for thin-film encapsulation and formation of microelectronic devices and microelectromechanical systems (MEMS) that include the membrane transducers.