Abstract:
A microelectronic package including a microelectronic die disposed within an opening in a microelectronic packaging core, wherein an encapsulation material is disposed within portions of the opening not occupied by the microelectronic die. Build-up layers of dielectric materials and conductive traces are then fabricated on the microelectronic die, the encapsulant material, and the microelectronic package core to form the microelectronic package.
Abstract:
A film bulk acoustic resonator formed on a substrate includes a layer of piezoelectric material having a first major surface, and a second major surface sandwiched between a first conductive and a second conductive layer. The substrate on which the film bulk acoustic resonator is formed has an opening therein which exposes the first conductive layer of the film bulk acoustic resonator. The opening is substantially in the shape of a parallelogram having a first pair of parallel sides and a second pair of parallel sides. One of the first pair of parallel sides makes an angle at other than 90 degrees with one of the second pair of parallel sides.
Abstract:
A film bulk acoustic resonator is formed on a substrate. The film bulk acoustic resonator includes a layer of piezoelectric material having a first surface proximate the substrate, and a second surface distal from the substrate. The first conductive layer deposited on the first surface of the piezoelectric material includes a first portion having a surface on a different plane than a surface associated with a second portion. A method for forming the device includes depositing a first portion of a first electrode, and a piezoelectric layer onto the substrate. The method includes removing a portion of the substrate under the piezoelectric layer and under the portion of the first electrode, and depositing a second portion of the first electrode onto the piezoelectric film layer and onto the first portion of the first electrode.
Abstract:
A microelectromechanical system (MEMS) switch has a beam with a high-resonance frequency. The MEMS switch includes a substrate having an electrical contact and a hexsil beam coupled to the substrate in order to transfer electric signals between the beam and the contact when an actuating voltage is applied to the switch. A method of fabricating a MEMS switch includes forming a substrate having a contact and forming a beam. The method further includes attaching the beam to the substrate such that the beam is maneuverable into and out of contact with the substrate.
Abstract:
Microelectromechanical system (MEMS) apparatus and methods for surface acoustic wave (SAW) switching are disclosed. The apparatus includes a piezoelectric substrate having spaced apart input and output SAW transducers. A MEMS switch is arranged between the input and output SAW transducers The MEMS switch has a deformable member in electromagnetic communication with one or more actuation electrodes formed on or above the substrate. The deformable member is deformable to mechanically contact the substrate to deflect or absorb a SAW generated by the input SAW transducer.
Abstract:
A microelectromechanical (MEMS) resonator with a vacuum-cavity is fabricated using polysilicon-enabled release methods. A vacuum-cavity surrounding the MEMS beam is formed by removing release material that surrounds the beam and sealing the resulting cavity under vacuum by depositing a layer of nitride over the structure. The vacuum-cavity MEMS resonators have cantilever beams, bridge beams or breathing-bar beams.
Abstract:
A packaging technology that fabricates a microelectronic package including build-up layers, having conductive traces, on an encapsulated microelectronic die and on other packaging material that surrounds the microelectronic die, wherein an moisture barrier structure is simultaneously formed with the conductive traces. An exemplary microelectronic package includes a microelectronic die having an active surface and at least one side. Packaging material(s) is disposed adjacent the microelectronic die side(s), wherein the packaging material includes at least one surface substantially planar to the microelectronic die active surface. A first dielectric material layer may be disposed on at least a portion of the microelectronic die active surface and the encapsulation material surface. At least one conductive trace is then formed on the first dielectric material layer to electrically contact the microelectronic die active surface. A barrier structure proximate an edge of the microelectronic package is formed simultaneously out of the same material as the conductive traces.
Abstract:
Microelectronic packages including a microelectronic die disposed within a recess in a heat spreader and build-up layers of dielectric materials and conductive traces are then fabricated on the microelectronic die and the heat spreader to form the microelectronic package, and methods for the fabrication of the same, including methods to align the microelectronic die within the heat spreader. In another embodiment, a microelectronic die is disposed on a heat spreader which has a filler material disposed therearound and build-up layers of dielectric materials and conductive traces are then fabricated on the microelectronic die and the filler material to form the microelectronic package, and methods for the fabrication of the same, including methods to align the microelectronic die on the heat spreader.
Abstract:
A microelectromechanical system (MEMS) switch having a high-resonance-frequency beam is disclosed. The MEMS switch includes first and second spaced apart electrical contacts, and an actuating electrode. The beam is adapted to establish contact between the electrodes via electrostatic deflection of the beam as induced by the actuating electrode. The beam may have a cantilever or bridge structure, and may be hollow or otherwise shaped to have a high resonant frequency. Methods of forming the high-speed MEMS switch are also disclosed.
Abstract:
A microelectromechanical system (MEMS) switch has a beam with a high-resonance frequency. The MEMS switch includes a substrate having an electrical contact and a hexsil beam coupled to the substrate in order to transfer electric signals between the beam and the contact when an actuating voltage is applied to the switch. A method of fabricating a MEMS switch includes forming a substrate having a contact and forming a beam. The method further includes attaching the beam to the substrate such that the beam is maneuverable into and out of contact with the substrate.