Abstract:
The present disclosure is directed to a method of making an optical fiber with improved bend performance, the optical fiber having a core and at least one cladding layer, and a chlorine content in the in the last layer of the at least one cladding layer that is greater than 500 ppm by weight. The fiber is prepared using a mixture of a carrier gas, a gaseous chlorine source material and a gaseous reducing agent during the sintering of the last or outermost layer of the at least one cladding layer. The inclusion of the reducing gas into a mixture of the carrier gas and gaseous chlorine material reduces oxygen-rich defects that results in at least a 20% reduction in TTP during hydrogen aging testing.
Abstract:
The invention concerns a Photonic Crystal Fiber (PCF) a method of its production and a supercontinuum light source comprising such PCF. The PCF has a longitudinal axis and comprises a core extending along the length of said longitudinal axis and a cladding region surrounding the core. At least the cladding region comprises a plurality of microstructures in the form of inclusions extending along the longitudinal axis of the PCF in at least a microstructured length section. In at least a degradation resistant length section of the microstructured length section the PCF comprises hydrogen and/or deuterium. In at least the degradation resistant length section the PCF further comprises a main coating surrounding the cladding region, which main coating is hermetic for the hydrogen and/or deuterium at a temperature below Th, wherein Th is at least about 50° C., preferably 50° C.
Abstract:
A method of processing an optical fiber of the invention includes: a determination step of determining at least an ambient temperature of conditions of a diffusion treatment that causing an optical fiber to be subjected to an non-oxygen bridging atmosphere; an exposure step of exposing the optical fiber to a gas including an oxygen bridging element that is capable of processing the Non-Bridging Oxygen Hole Centers by being bonded to a non-bridging oxygen in the optical fiber, and causing the oxygen bridging element to infiltrate into the optical fiber; and a diffusion step of subsequently causing the optical fiber to be subjected to the non-oxygen bridging atmosphere in the exposure ambient temperature which is determined by the determination step and at which the optical fiber is subjected to the non-oxygen bridging atmosphere, and thereby diffusing the oxygen bridging element into the optical fiber.
Abstract:
A method of making a fused silica article having a combined concentration of protium and deuterium in a range from about 1×1016 molecules/cm3 up to about 6×1019 molecules/cm3. In some embodiments, deuterium is present in an amount greater than its natural isotopic abundance. The method includes the steps of providing a fused silica boule, diffusing at least one of protium and deuterium into the boule, and annealing the boule to form the fused silica article. A method of diffusing hydrogen into fused silica and a fused silica article loaded with hydrogen formed by the method are also described.
Abstract translation:制备具有约1×10 16分子/ cm 3至多约6×10 19分子/ cm 3范围内的ium和氘的组合浓度的熔融二氧化硅制品的方法。 在一些实施方案中,氘的存在量大于其天然同位素丰度。 该方法包括以下步骤:提供熔融二氧化硅焦耳,将钚和氘中的至少一种扩散到该原子核中,以及对该坯进行退火以形成熔融二氧化硅制品。 还描述了将氢扩散到熔融二氧化硅中的方法和通过该方法形成的负载有氢的熔融二氧化硅制品。
Abstract:
An optical member comprising OD-doped silica glass, optionally doped with fluorine. The optical member is particularly advantageous for use in connection with radiation having a wavelength shorter than about 248 nm. In certain embodiments the optical member can be advantageously used for wavelength as short as about 157 nm.
Abstract:
What is disclosed includes OD-doped synthetic silica glass capable of being used in optical elements for use in lithography below about 300 nm. OD-doped synthetic silica glass was found to have significantly lower polarization-induced birefringence value than non-OD-doped silica glass with comparable concentration of OH. Also disclosed are processes for making OD-doped synthetic silica glasses, optical member comprising such glasses, and lithographic systems comprising such optical member. The glass is particularly suitable for immersion lithographic systems due to the exceptionally low polarization-induced birefringence values at about 193 nm.
Abstract:
A fused silica article having a combined concentration of hydroxyl (OH) and deuteroxyl (OD) concentration of less than 10 parts per million (ppm) and, in one embodiment, less than 1 ppm. The fused silica article is formed by drying a soot blank in a halogen-free atmosphere comprising carbon monoxide. The dried soot blank may optionally be doped to reach target levels of OH and OD concentrations and improve homogeneity within the fused silica article. The dried soot blank is then oxidized and, sintered to form the article. A method of reducing the combined concentration of OH and OD to less than 10 ppm is also described.
Abstract:
An optical member comprising OD-doped silica glass, optionally doped with fluorine. The optical member is particularly advantageous for use in connection with radiation having a wavelength shorter than about 248 nm. In certain embodiments the optical member can be advantageously used for wavelength as short as about 157 nm.
Abstract:
An optical waveguide fiber or body having a doped outer region which can be utilized in an optical coupler, a preform which can serve as the precursor for the fiber, an optical coupler, and methods of making same. Water, for example in the form of H2O and/or D2O, may be added to the cladding of the optical waveguide fiber or body.
Abstract translation:具有可用于光耦合器中的掺杂外部区域的光波导纤维或主体,可用作光纤的前体的预成型件,光耦合器及其制造方法。 例如可以将H 2 O 2和/或D 2 O的形式的水添加到光波导纤维或体的包层中。
Abstract:
An optical waveguide fiber or body having a doped outer region which can be utilized in an optical coupler, a preform which can serve as the precursor for the fiber, an optical coupler, and methods of making same. Water, for example in the form of H2O and/or D2O, may be added to the cladding of the optical waveguide fiber or body.