Abstract:
An integrated circuit that includes a substrate, a photodiode, and a Fresnel structure. The photodiode is formed on the substrate, and it has a p-n junction. The Fresnel structure is formed above the photodiode, and it defines a focal zone that is positioned within a proximity of the p-n junction. In one aspect, the Fresnel structure may include a trench pattern that functions as a diffraction means for redirecting and concentrating incident photons to the focal zone. In another aspect, the Fresnel structure may include a wiring pattern that functions as a diffraction means for redirecting and concentrating incident photons to the focal zone. In yet another aspect, the Fresnel structure may include a transparent dielectric pattern that functions as a refractive means for redirecting and concentrating incident photons to the focal zone.
Abstract:
An apparatus includes a light senor having directional sensitivity. The light sensor includes multiple light sensitive elements disposed below the same aperture. Each of the light sensitive elements has a respective field of view through the aperture that differs from the field of view of the other light sensitive elements. Signals from the light sensor can facilitate determining the direction of incoming light.
Abstract:
Optoelectronic devices that use very thin single-crystalline inorganic semiconductor films as phonon-absorbing layers in combination with non-lattice optical cavities are provided.
Abstract:
An optical biosensor module includes a circuit board having a mounting surface and first and second circuits. A light-receiving unit is disposed on the mounting surface, and includes a light receiver electrically connected to the first circuit and having a light-receiving surface. A light-emitting unit is disposed on the light-receiving surface, and includes a light emitter electrically connected to the second circuit and having a light-emitting surface, and a light emitter blocking wall surrounding the light emitter. An opaque interface exists between the light receiver and the light emitter, and a top side of the light emitter blocking wall is equal to or higher than the light-emitting surface.
Abstract:
Manufacturing opto-electronic modules (1) includes providing a substrate wafer (PW) on which detecting members (D) are arranged; providing a spacer wafer (SW); providing an optics wafer (OW), the optics wafer comprising transparent portions (t) transparent for light generally detectable by the detecting members and at least one blocking portion (b) for substantially attenuating or blocking incident light generally detectable by the detecting members; and preparing a wafer stack (2) in which the spacer wafer (SW) is arranged between the substrate wafer (PW) and the optics wafer (OW) such that the detecting members (D) are arranged between the substrate wafer and the optics wafer. Emission members (E) for emitting light generally detectable by the detecting members (D) can be arranged on the substrate wafer (PW). Single modules (1) can be obtained by separating the wafer stack (2) into separate modules.
Abstract:
A photodetector of the invention is characterized by having a plurality of detector elements that are arranged over a light-transparent substrate and are connected in parallel. A foldable portable communication tool having two display portions of the invention is characterized by including one photodetector which includes a plurality of detector elements connected in parallel.
Abstract:
An optoelectronic sensor for recognizing objects or object properties comprises a light transmitter for transmitting transmitted light into a detection zone, a light receiver for receiving received light and an evaluation unit which is configured to detect an object located in or projecting into a detection zone and/or to determine a property of such an object with reference to the received light received by the light receiver. The light transmitter comprises a monolithic semi-conductor component having a first light emitting layer and a second light emitting layer, with the first light emitting layer being configured for emitting red light and the second light emitting layer being configured for emitting infrared light, and with the second light emitting layer defining a central light emitting surface and the first light emitting layer defining an outer light emitting surface surrounding the central light emitting surface.
Abstract:
In order to provide an optical sensor that can accurately sense a direction of movement of an object to be sensed even in a case where disturbance light is present, an optical sensor of the present invention includes: a light-emitting element; a circularly-segmented light-receiving element group (RDPD), including light-receiving elements circularly provided at edges of a region on which reflected light from an object to be sensed reflecting light emitted by the light-emitting element is incident, for generating respective photocurrents upon receiving the reflected light; and a gesture circuit section for sensing a direction of movement of the object to be sensed upon receiving the photocurrents generated by the light-receiving elements included in the circularly-segmented light-receiving element group (RDPD).
Abstract:
An optical connector includes a circuit board, at least one light emitter, at least one light receiver, a shell, and at least two enhancing pins. The circuit board includes a mounting surface. The at least one light emitter and at least one light receiver are mounted on the mounting surface. The shell covers the at least one light emitter and the at least one light receiver. The at least two enhancing pins passes through the shell and are received in the circuit board to fix the shell on the mounting surface.
Abstract:
In a sensing device and a method for sending a light by using the same, the sensing device includes: a lower panel; an upper panel facing the lower panel; a liquid crystal layer disposed between the lower panel and the upper panel; an infrared ray sensor formed in at least one of the lower panel and the upper panel; and a visible ray sensor formed in at least one of the lower panel and the upper panel. The sensing device simultaneously includes the infrared ray sensor and the visible ray sensor such that a touch sensing function or an image sensing function having high reliability may be realized.