Abstract:
The present application discloses an optical receiving device and an optical sensing device. The optical receiving device includes a lens assembly, a reflecting member, and a photosensitive member. The lens assembly includes at least one lens. The reflecting member is located on a transmission path of light passing through the lens assembly. The reflecting member has a reflecting surface. The reflecting surface is configured to reflect the light passing through the lens assembly. The photosensitive member has a photosensitive surface. The photosensitive surface is configured to receive light reflected by the reflecting surface. After passing through the lens assembly, a detecting echo light beam reflected back from a target object is reflected by the reflecting surface of the reflecting member, so that the light is transmitted to the photosensitive surface of the photosensitive member intensively.
Abstract:
Described are an apparatus and a method for manufacturing a three-dimensional body comprising mutually oriented devices. In accordance with the invention, a substrate having a first and a second substrate region is provided. A first device is provided in the first substrate region. A second device is provided in the first or in the second substrate region. The substrate is bent along at least one bending edge in order to obtain a three-dimensional body. In accordance with the invention, the first device and the second device are oriented to each other by the bending in order to provide a communications path between the same.
Abstract:
A laser beam profiler unit for measuring an intensity distribution of a laser beam oscillated from a laser oscillator includes a magnifying optical system for magnifying a spot diameter of the laser beam oscillated from the laser oscillator and focused by a condensing lens, a first transmission prism for attenuating the laser beam, a second transmission prism for further attenuating a laser beam reflected by the first transmission prism, an image capturing element for detecting the laser beam reflected by the second transmission prism, and an analyzer for analyzing an intensity distribution of a spot of the laser beam from data of the laser beam detected by the image capturing element.
Abstract:
A light beam measurement device includes: a polarization measurement unit including a first measurement beam splitter provided on an optical path of a laser beam and configured to measure a polarization state of the laser beam having been partially reflected by the first measurement beam splitter; a beam profile measurement unit including a second measurement beam splitter provided on the optical path of the laser beam and configured to measure a beam profile of the laser beam having been partially reflected by the second measurement beam splitter; and a laser beam-directional stability measurement unit configured to measure a stability in a traveling direction of the laser beam, while the first measurement beam splitter and the second measurement beam splitter are made of a material containing CaF2.
Abstract:
An optoelectronic module includes a beam transmitter, which emits at least one beam of light along a beam axis, and a receiver, which senses the light received by the module along a collection axis of the receiver, which is parallel to the beam axis within the module. Beam-combining optics direct the beam and the received light so that the beam axis is aligned with the collection axis outside the module. The beam-combining optics include multiple faces, including at least a first face configured for internal reflection and a second face comprising a beamsplitter, which is intercepted by both the beam axis and the collection axis.
Abstract:
A prism optical system including at least four optical surfaces, each having optical functions. At least two of the four optical surfaces are each a rotationally asymmetric surface, and one of two surfaces on which light is incident or from which light exits out is capable of one transmission and two internal reflections.
Abstract:
A laser patterning examining apparatus includes a fixing plate, a rotating plate configured to move vertically with respect to the fixing plate and to rotate, a housing connected to the rotating plate, a laser emission unit over the fixing plate and emits a laser beam, a prism unit on the housing and refracts a first portion of the laser beam received from the laser emission unit and transmits a second portion of the laser beam, and a beam profiler on the housing and analyzes the pattern of the first portion refracted by the prism unit.
Abstract:
An optical fiber assembly includes a prism, four first collimating portions, four second collimating portions, two third collimating portion, two light emitting elements, two light receiving elements, four optical fibers, and two light intensity detectors. The prism includes an incident surface, a first reflecting surface, a first emergent surface, a second reflecting surface, and a second emergent surface. The first collimating portions are positioned on the incident surface. The second collimating portions are positioned on the first emergent surface. The third collimating portions are positioned on the second emergent surface. Each light emitting element faces one of the first collimating portions for emitting light beams. Each light receiving element faces one of the first collimating portions. Each optical fiber faces one of the second collimating portions. Each light intensity detector faces one of the third collimating portions for detecting light intensity of a corresponding light emitting element.
Abstract:
A downpipe sensor detects single grains in a downpipe. A transmitting unit and a receiving unit are spaced apart across a measurement field. Light beams emitted by the transmitting unit are guided in the case of free beam path through the downpipe interior to the receiving unit and are attenuated during a passage of a grain. The receiving unit is a line element with a predefined number of receiving elements. The transmitting unit has light-emitting diodes with perforated screens and a reflector element in the form of a right triangular prism. Light is emitted from the diodes transversely to a receiving axis of the receiving unit, bundled via the perforated screens, guided into the reflector element, deflected by total reflection toward a exit surface to form a light band of parallel light beams. The light band illuminates the entire measurement field with even intensity.
Abstract:
Systems and methods for measuring an intensity characteristic of a light beam are disclosed. The methods include directing the light beam into a prism assembly that includes a thin prism sandwiched by two transparent plates, and reflecting a portion of the light beam by total-internal-reflection surface to an integrating sphere while transmitting the remaining portion of the light beam through the two transparent plates to a beam dump. The method also includes detecting light captured by the integrating sphere and determining the intensity characteristic from the detected light.