Abstract:
One aspect of the invention is a Fabry-Perot cavity which has in part a waveguiding portion and in part a nonwaveguiding portion. In this manner, a cavity is constructed whose length would be too short to manipulate effectively if it were comprises exclusively of a waveguiding portion, and whose length might have unacceptable diffraction losses if it were comprised exclusively of a nonwaveguiding portion. In the inventive device the resonant wavelength can be adjusted by varying the length of either the gap or the waveguide or both. The device can be advantageously constructed and aligned using fiber coupling technology.
Abstract:
A tunable notch filter for operation in reflection mode comprises an antenna layer positioned on a transmissive substrate and a mirror layer positioned on a support substrate. The antenna layer and the mirror layer are positioned on opposite sides of a gap and facing each other, the gap having a gap distance. The notch filter is tuned by adjusting the gap distance between the antenna layer and the mirror layer. Tuning the notch filter to a selected state can cause the filter to selectively attenuate the reflection of at least some electromagnetic radiation that is incident on the transmissive substrate and enters the notch filter.
Abstract:
An imaging device outputs imaging data captured with a predetermined exposure time, and a brightness determination unit determines whether the brightness of the imaging data is within a predetermined range. Re-imaging is performed with the exposure time changed when the brightness of the imaging data is not within the predetermined range. The re-imaging is performed with the exposure time lengthened when the brightness of the imaging data is less than a determination value, and the re-imaging is performed with the exposure time shortened when the brightness of the imaging data is saturated.
Abstract:
A spectroscopic analysis device for analysis of a sample comprises an input for receiving light from the sample and a photonic integrated circuit. This photonic optical filter comprises one or more tunable bandpass filters arranged to filter the received light. Furthermore, the device comprises a controller that is arranged—to control the one or more tunable bandpass filters, to receive filter results obtained from the one or more tunable bandpass filters, and to provide spectroscopic analysis results based on the received filter results.
Abstract:
A spectroscopic analysis device for analysis of a sample comprises an input for receiving light from the sample and a photonic integrated circuit. This photonic optical filter comprises one or more tunable bandpass filters arranged to filter the received light. Furthermore, the device comprises a controller that is arranged—to control the one or more tunable bandpass filters, to receive filter results obtained from the one or more tunable bandpass filters, and to provide spectroscopic analysis results based on the received filter results.
Abstract:
The invention provides spectroscopic systems and spectrometers employing an optical interference filter module having a plurality of bandpass regions. In certain embodiments, the systems include a mechanism for wavelength tuning/scanning and wavelength band decoding based on an angular motion of one or more filters. A spectral processing algorithm separates the multiplexed wavelength-scanned bandpass regions and quantifies the concentrations of the analyzed chemical and/or biological species. The spectroscopic system allows for compact, multi-compound analysis, employing a single-element detector for maximum performance-to-cost ratio. The spectroscopic system also allows for high-sensitivity measurement and robust interference compensation.
Abstract:
Various embodiments disclosed herein describe an infrared (IR) imaging system for detecting a gas. The imaging system can include an optical filter that selectively passes light having a wavelength in a range of 1585 nm to 1595 nm while attenuating light at wavelengths above 1600 nm and below 1580 nm. The system can include an optical detector array sensitive to light having a wavelength of 1590 that is positioned rear of the optical filter.
Abstract:
A spectrometry device includes a wavelength variable interference filter, a filter driving unit, an imaging element which obtains color images corresponding to light with a red wavelength, light with a green wavelength, and light with a blue wavelength, respectively, and a composition unit which generates a composite image in which the red image, the green image, and the blue image are composited, the filter driving unit causes the wavelength variable filter to change the red wavelength every time when the red image is obtained, causes the wavelength variable filter to change the green wavelength every time when the green image is obtained, and causes the wavelength variable filter to change the blue wavelength every time when the blue image is obtained.
Abstract:
The invention relates to methods and systems for measuring and/or monitoring the chemical composition of a sample (e.g., a process stream), and/or detecting specific substances or compounds in a sample, using light spectroscopy such as absorption, emission and fluorescence spectroscopy. In certain embodiments, the invention relates to spectrometers with rotating narrow-band interference optical filter(s) to measure light intensity as a function of wavelength. More specifically, in certain embodiments, the invention relates to a spectrometer system with a rotatable filter assembly with a position detector rigidly attached thereto, and, in certain embodiments, the further use of various oversampling methods and techniques described herein, made particularly useful in conjunction with the rotatable filter assembly. In preferred embodiments, the rotatable filter is tilted with respect to the rotation axis, thereby providing surprisingly improved measurement stability and significantly improved control of the wavelength coverage of the filter spectrometer.
Abstract:
The invention provides spectroscopic systems and spectrometers employing an optical interference filter module having a plurality of bandpass regions. In certain embodiments, the systems include a mechanism for wavelength tuning/scanning and wavelength band decoding based on an angular motion of one or more filters. A spectral processing algorithm separates the multiplexed wavelength-scanned bandpass regions and quantifies the concentrations of the analyzed chemical and/or biological species. The spectroscopic system allows for compact, multi-compound analysis, employing a single-element detector for maximum performance-to-cost ratio. The spectroscopic system also allows for high-sensitivity measurement and robust interference compensation.