Abstract:
A method is provided for alerting a driver of a vehicle of an unsafe exterior lighting status. The method includes receiving, at a first vehicle, information sufficient to detect a presence of a second vehicle. Once a vehicle is detected, the method continues to identify a direction of travel of the second vehicle with respect to the first vehicle. The method includes measuring a level of ambient light, and determining the level of ambient light is below a threshold level. The method further identifies any presence of functioning exterior lighting of the second vehicle by detecting a light color and light intensity. When an unsafe exterior lighting status is determined, the method includes alerting a driver of the second vehicle using a vehicle-to-vehicle communication signal. The signal includes a notification suggesting usage of at least one of headlights, parking lights, and hazard lights.
Abstract:
In this color measurement device and method, an entire image and a partial image of a color chart are acquired, respectively, during conveyance of the color chart by a conveyance unit and during re-conveyance of the color chart by the conveyance unit, and an amount of positional deviation of the color chart occurring between the conveyance and the re-conveyance is derived based on the acquired entire and partial images. Then, a color of each of a plurality of patches of the color chart is measured by a color measuring unit, while a measurement position of the color measuring unit is corrected according to the derived positional deviation amount.
Abstract:
Described is a method and a device for screen calibration for the true-to-original reproduction of surface colors, the spectral reflection distribution of which is known, wherein by setting parameters the screen can be influenced using software and an electronic controller in each partial region of the screen. The disclosure is characterized in that an observer adapts the reproduced color impression of the screen to the color impression of an original in each partial region of the screen, wherein the original is compared to the screen colors immediately thereafter on the screen surface and the screen parameters are varied until the color impressions of the original and of the screen appear identical to the observer on the respectively viewed partial screen, viewed from a predefined observer angle, and the settings performed are stored in a screen profile.
Abstract:
An electronic device may be provided with a display mounted in a housing. A color sensing ambient light sensor may measure the color of ambient light. The color sensing ambient light sensor may produce sensor output signals in a device-dependent color space. Control circuitry in the electronic device may convert the sensor output signals from the device-dependent color space to a device-independent color space using a color converting matrix. The color converting matrix may be determined using stored training data. The training data may include color data for different training light sources. The training data may be weighted to selectively control the influence of the training data on the color converting matrix. The training data may be weighted based on a distance between the training color data and a target color in the detected ambient light.
Abstract:
The present subject matter relates to absorbent articles and signaling devices for use therewith. The signaling device includes one or more non-invasive sensors configured to detect the presence of a substance, such as a body fluid, in the absorbent article. The signaling device can provide an audible and/or visible alert to the user of the absorbent article when it detects the presence of a substance. The absorbent article includes one or more identifiable characteristics the presence of which permits operation of the signaling device. In this manner, the present disclosure provides for product and signaling device matching for use.
Abstract:
Solid contents verification systems and methods are provided. The system includes a contents sensor unit, a container-carrying unit and a control unit. The contents sensor unit has at least one contents sensor configured to send and receive sonic pulses to determine a state of contents in a container. The contents sensor unit is configured to send a signal communicating a state of the contents in a container. The container-carrying unit is configured to hold a container in substantial alignment with the contents sensors to expose the contents to the sonic pulses. The control unit is operatively connected to the contents sensor unit. The control unit is configured to receive the signal communicating the state of the contents and to compare the state of the contents with a desired state of the contents.
Abstract:
A method is provided for alerting a driver of a vehicle of an unsafe exterior lighting status. The method includes receiving, at a first vehicle, information sufficient to detect a presence of a second vehicle. Once a vehicle is detected, the method continues to identify a direction of travel of the second vehicle with respect to the first vehicle. The method includes measuring a level of ambient light, and determining the level of ambient light is below a threshold level. The method further identifies any presence of functioning exterior lighting of the second vehicle by detecting a light color and light intensity. When an unsafe exterior lighting status is determined, the method includes alerting a driver of the second vehicle using a vehicle-to-vehicle communication signal. The signal includes a notification suggesting usage of at least one of headlights, parking lights, and hazard lights.
Abstract:
A spectrometry device includes a spectroscope, an extraneous light sensor, and a light intensity controller. The spectroscope includes a light source that emits illumination light to a medium and a wavelength-selective interference filter that performs spectroscopy on light incident from the medium. The extraneous light sensor detects the intensity of extraneous light which is incident on the medium. The light intensity controller controls the intensity of the illumination light emitted from the light source such that the light intensity ratio of the illumination light and the extraneous light is equal to a first value.
Abstract:
A colorimeter, webcam, camera, spectrophotometer, scanner or other instrument measures the color composition and conditions and texture of a person's body part or presented beauty product and an individual custom formulation is produced. A presented beauty product may include foundation, concealer, tinted moisturizer, primer, skin care products, blush, nail polish, hair dye, lipstick, lip gloss, mascara, eye liner and eye shadow. The produced custom formulation may comprise foundation, concealer, tinted moisturizer, primer, skin care products, blush, nail polish, hair dye, lipstick, lip gloss, mascara, eye liner, eye shadow or other consumer products. A computer system 301 includes a processor 501 and a non-transitory, computer readable medium 500 containing machine readable instructions that accept data from a colorimeter 300 or like instrument and uses a main executable program 502 and a subroutine 504 for color analysis.
Abstract:
A set of images of an object are captured from a set of lenses positioned at different angles. A common point is determined, which has a color value that differs among the images. Color at the point is mathematically expressed as a set of equations. The equations comprise a recorded color value for the point, an ambient contribution, a diffuse contribution, and a specular contribution. The ambient and diffuse contributions are set as equal across the equations. The specular contribution is determined, such as by quantifying the light sources and solving for the specular contribution using a Phong lighting model equation. True color for the point, which is based on the ambient and diffuse contribution, is determined by solving a set of simultaneous equations once the specular contribution is known. An image is created where the point has the true color as determined above.