Abstract:
A container part having an opening portion and a lid part joined by low-melting-point glass and covering the opening portion are provided, and the lid part has a first surface and a second surface intersecting with the first surface, the first surface and the second surface are located inside an outer periphery of the lid part, and the low-melting-point glass joins the container part and the lid part on the first surface and the second surface.
Abstract:
Provided is a fire detector in which an element substrate can be easily removed from and mounted into an optical case. The fire detector includes: an optical case (21); an element substrate (31), on which a light-receiving element (12) is mounted, the element substrate (31) being provided in the optical case (21); a signal line (35) passing through an introduction portion of a peripheral wall (21a) of the optical case (21), the signal line (35) being connected to the element substrate (31); and an optical cover (30) for closing an opening of the optical case (21), in which the signal line (35) is inserted into a slit (37) which is open on an upper end surface (21f) of the introduction portion of the peripheral wall (21a).
Abstract:
The present invention is a mold pathogen detection apparatus in which an agar strip is exposed to the environment being tested for a period of time and then exposed to a non-UV light to determine the amount of light passing through the agar strip.
Abstract:
An optical measurement instrument, which is equipped with transportation protection, includes a body structure (201), a mechanical support element(202) for supporting an optical interface, a moveably supported receptable element (211) for receiving a sample plate and located between the mechanical support element and the body structure, and a detachable transportation protection element (212-215) arranged to mechanically restrict movements of the receptable element and the mechanical support element. The transportation protection element is arranged to be pressed between the mechanical support element (202) and the body structure (201). Hence, for the transportation protection, there is no need to use e.g. a bolt that may be more laborious to install and remove than the transportation protection element to be pressed between the mechanical support element (202) and the body structure (201).
Abstract:
An infrared detector includes a detecting element, a first electrode, a second electrode, and a covering structure. The detecting element defines an absorbing part and a non-absorbing part. The detecting element includes a first end and a second end opposite with the first end. The first end is disposed in the absorbing part. The second end is disposed in the non-absorbing part. The first electrode is electrically connected with the first end. The second electrode is electrically connected with the second end. The covering structure covers the non-absorbing part.
Abstract:
A drug disposal and verification device includes a first chamber and a second chamber. The first chamber has an injection port for receiving wasted drug solution and a disposal volume. A positive displacement flow measuring device positioned between the injection port and the disposal volume is used to measure the volume of wasted drug solution injected into the device. The positive displacement flow measuring device is also adapted to divert a small portion of the wasted drug solution to the second chamber. The second chamber holds a breakable test reagent ampule for quantitative testing of the wasted drug solution. The disposal volume of the first chamber may include at least one test strip for qualitative testing of the wasted drug solution.
Abstract:
The present invention provides systems and methods for measuring an analyte in a medium without exposing the medium to contamination. The systems and methods employ a novel combination of a small sensor device embedded in a Luer cap and capable of wirelessly transmitting data to a reading device.
Abstract:
There is provided a sample inspection casing capable of easily and surely inspecting an object to be inspected. The sample inspection casing 1 includes: a sample mounting table 5 for mounting thereon an object 11 to be inspected; a prism cut portion 14 serving as an optical path changing portion for allowing the object 11 on the sample mounting table 5 to be irradiated with illuminating light; and an image magnifying lens 15 for transmitting light, which is reflected on the object 11 on the sample mounting table 5, to magnify an image of the object 11.
Abstract:
A high-speed surface inspection system for a reticle pod and method comprises a cabinet, a clamping module, a first inspection device, a second inspection device, and a travel stroke controller. An interior of the cabinet is divided into an automated device area, a first inspection area, and a second inspection area. The travel stroke controller controls the clamping module to reciprocate between the automated device area and the first inspection area so as to transport a first portion of the reticle pod, and controls the clamping module to reciprocate between the automated device area and the second inspection area so as to transport a second portion of the reticle pod. A high-speed surface inspection method for a reticle pod is further provided. The present application solves the issue of an inability for efficient surface inspection of a reticle pod.
Abstract:
A luminometer (400) includes a light detector (630) configured to sense photons (135). The luminometer (400) includes an analog circuit (915a) configured to provide an analog signal (965) based on the photons (135) emitted from assay reactions over a time period and a counter circuit (915b) configured to provide a photon count (970) based on the photons (135) emitted from the assay reactions over the time period. The luminometer (400) includes a luminometer controller (905) configured to, in response to an analog signal value of the analog signal (965) being greater than a predetermined value, determine and report a measurement value of the photons (135) emitted from the assay reactions over the time period based on the analog signal value of the analog signal (965) and a linear function (1010). Optionally, the linear function (1010) is derived from a relationship between the analog signal (965) and the photon count (970).