Abstract:
An intracavity laser absorption infrared spectroscopy system for detecting trace analytes in vapor samples. The system uses a spectrometer in communications with control electronics, wherein the control electronics contain an analyte database that contains absorption profiles for each analyte the system is used to detect. The system can not only detect the presence of specific analytes, but identify them as well. The spectrometer uses a hollow cavity waveguide that creates a continuous loop inside of the device, thus creating a large path length and eliminating the need to mechanically adjust the path length to achieve a high Q-factor. In a preferred embodiment, the laser source may serve as the detector, thus eliminating the need for a separate detector.
Abstract:
The present teachings provide for systems, and components thereof, for detecting and/or analyzing light. These systems can include, among others, optical reference standards utilizing luminophores, such as nanocrystals, for calibrating, validating, and/or monitoring light-detection systems, before, during, and/or after sample analysis.
Abstract:
An analyser 10 for identifying or verifying or otherwise characterising a liquid based drug sample 16 comprising: an electromagnetic radiation source 11 for emitting electromagnetic radiation 14a in at least one beam at a sample 16, the electromagnetic radiation comprising at least two different wavelengths, a sample detector 17 that detects affected electromagnetic radiation resulting from the emitted electromagnetic radiation affected by the sample, and a processor 18 for identifying or verifying the sample from the detected affected electromagnetic radiation, wherein each wavelength or at least two of the wavelengths is between substantially 1300 nm and 2000 nm, and each wavelength or at least two of the wavelengths is in the vicinity of the wavelength(s) of (or within a region spanning) a spectral characteristic in the liquid spectrum between substantially 1300 nm and 2000 nm.
Abstract:
A material is excited with light whose intensity is modulated according to a modulation signal. The modulation signal includes multiple transitions between at least two intensity levels, with times of at least a first contiguous sequence of the transitions being selected according to an irregular pattern. A response of the material to the excitation is detected.
Abstract:
A compact analyzer includes a flow cell having a flow channel through which a sample is made to pass. First and second light sources are arranged to emit first and second excitation light into first and second overlapping portions of the flow channel, respectively. The first excitation light stimulates a first light emission from particles of a first particle type that may be present in the sample; the second excitation light stimulates a second light emission from particles of a second particle type. A detector receives the first and second light emission from the corresponding particles present in the sample in a detection portion of the flow channel, and provides a detector output based on the received light emission. The light sources are modulated at different frequencies so that a frequency analysis of the detector output can provide separate information about the first and second particle types.
Abstract:
A frequency modulated spectroscopy system, including a photo-detector, a band-pass filter to filter the output of the photo-detector, and a rectifier to demodulate. The band-pass filter has a relatively high Q factor. With the high Q factor band-pass filter and rectifier, a reference sinusoid is not required for demodulation, resulting in phase-insensitive spectroscopy. Other embodiments are described and claimed.
Abstract:
A microfluidic detection system is provided. The system comprises a device for illuminating a microfluidic sample comprising an analyte, wherein illumination from the illuminating device is modulated on and off at a determined frequency, a gated phase-sensitive detector that detects, one or more wavelengths emitting from the analyte, at a determined frequency, and a control device that coordinates the modulating frequency of the illumination and the detecting frequency of the detector.
Abstract:
A multiplexed set of light sources having outputs of light with various wavelengths which are combined into one beam. The beam may impinge a particle in a flow channel of a cytometer. The light leaving the flow channel may be sensed by a detector and the light distinguished according to wavelength.
Abstract:
A method for measuring a fluorescent sample on a substrate. The method includes exciting the fluorescent sample with an exciting light source for the generation of a sample fluorescent optical signal and a substrate fluorescent optical signal substantially eliminated. The microfluidic substrate fluorescent optical signal is leaving the sample fluorescent optical signal. The sample fluorescence optical signal can then be processed.
Abstract:
A device comprising an acoustic detector, one or more thermal sensing elements coupled to the acoustic detector, and a light source. A method comprising directing a beam of light at a wavelength at or near one or more thermal sensing elements, wherein the thermal sensing elements are coupled to an acoustic detector, determining a resonance frequency of the acoustic detector, wherein the acoustic detector is coupled to one or more of the thermal sensing elements, and measuring the response of the acoustic detector to detect optical radiation absorption proximate to or at the surface of one or more thermal sensing elements.