Abstract:
A method of nullreadingnull the result of an assay effected by concentrating a detectable material in a comparatively small zone of a carrier in the form of a strip, sheet or layer through the thickness of which electromagnetic radiation such as visible light is transmissible, wherein at least a portion of one face or the carrier is exposed to incident electromagnetic radiation which is substantially uniform across the entire portion, the portion including the small zone, and electromagnetic radiation emerging from the opposite face of the carrier is measured to determine the assay result. Preferably the radiation is diffuse light.
Abstract:
A pathlength corrected spectrophotometer for tissue examination includes an oscillator for generating a carrier waveform of a selected frequency, an LED light source for generating light of a selected wavelength that is intensity modulated at the selected frequency introduced to a subject, and a photodiode detector for detecting light that has migrated in the tissue of the subject. The spectrophotometer also includes a phase detector for measuring a phase shift between the introduced and detected light, a magnitude detector for determination of light attenuation in the examined tissue, and a processor adapted to calculate the photon migration pathlength and determine a physiological property of the examined tissue based on the pathlength and on the attenuation data.
Abstract:
A spectroscopic system for quantifying in vivo concentration of an absorptive pigment in biological tissue includes an oscillator for generating a first carrier waveform of a first frequency on the order of 108 Hz, a light source for generating light of a selected wavelengths modulated by the carrier waveform, and a detector for detecting radiation that has migrated over photon migration paths in the tissue from an input port to a detection port spaced several centimeters apart. The wavelength is sensitive to concentration of an absorptive pigment present in the tissue. A phase detector compares the detected radiation with the introduced radiation and determines therefrom the phase shift of the detected radiation. A processor quantifies the concentration of the absorptive pigment by calculating a value of the absorption coefficient.
Abstract:
An instrument for determining the concentration of a particular gas that might be present in a sample has no moving parts and is extremely compact and inexpensive. A novel waveguiding structure serves both as an optical element and as the sample chamber. As an optical element, the waveguiding structure collects radiation from a blackbody source located at the entrance end of the waveguiding structure and conducts the radiation through the waveguiding structure, concentrating it on two infrared detectors mounted at the opposite end of the waveguiding structure. As a sample chamber, the waveguiding structure causes the radiation to undergo multiple reflections that result in the average path length being substantially greater than the physical length of the waveguiding structure. Each of the detectors has its own optical filter, and baffling assures that each detector responds only to radiation which has passed through its filter. One filter defines a spectral passband that coincides with the infrared absorption band of the gas to be measured. The other filter defines a non-absorbing or neutral passband. The electrical signals produced by the detectors are processed to provide a ratio, the value of which is related to the concentration of the particular gas to be detected.
Abstract:
An apparatus for inspecting the surface of a sheet-like object has a movable stage with an object mounted thereon; a source for lighting the object on the stage, particularly by making a plurality of illumination lights respectively having different wavelengths incident on the surface of the object from respective predetermined directions; image pickup device for fetching the image of the object under illumination of the light as image data or the images of parts of the object as image data obtained on the respective different wavelengths; image data processing device for inspecting the image data for defects; and a device for synchronizing control either for flashing the light at a predetermined time interval just after the stage commences its movement, synchronously with fetching the image data or for flashing the light and simultaneously fetching the image data obtained on the respective different wavelengths, synchronously with the object on the stage reaching respective predetermined positions while moving the stage.
Abstract:
A method of visually inspecting the formation of a web of translucent material by means of a device it moves past. The device consists of a source of light on one side of the web generating a beam of light of a desired hue and intensity that penetrates the web, and a video camera on the side of the web away from the source of light, intercepting the beam and converting it into a video signal that is forwarded to a monitor. The source of light emits the beam in a flash of duration t.sub.1 that is too short for the web to advance far enough while illuminated to blur the image. The image on the monitor is accompanied by a reference image.
Abstract:
An apparatus for inspecting a coating formed on a workpiece, comprising a light emitter and a light receiver positioned on respective sides of the workpiece; an amplifier for amplifying a detection signal from the light receiver and for generating an amplified output signal; a comparator for comparing the amplified output signal with a predetermined level thereby to generate a control signal indicative of a difference between the amplified output signal and the predetermined level; a zero adjustment for adjusting the amplified output signal to a zero value; and a tuning circuit for tuning the amplified output signal, which is generated from the amplifier when the workpiece to be inspected has not yet been formed with the coating, to a predetermined tuned value. The tuning circuit is operable to vary the amplification factor of the amplifier and also to the intensity of light emitted by the light emitter. In place of the tuning circuit, an amplification factor setting citcuit may be used for sampling the light transmissivity of the workpiece and for selecting one of amplification factors according to the result of sampling. After the formation of the coating on the workpiece, the amplified output signal may decrease with a decrease of the light transmissivity of the workpiece, and the coating condition is determined depending on whether or not the amplified output signal is lower than the predetermined level.
Abstract:
A web e.g. a fibre web as used in the manufacture of textiles is inspected e.g. for thickness uniformity or the like by transillumination, where the web is subject to ambient illumination, the transillumination being effected in modulated fashion whereby to distinguish measuring illumination from ambient illumination. Modulation may be effected by time-chopping a beam or by a narrow spectral band filter to improve signal-to-noise ratio.
Abstract:
Method and apparatus for accurately and instantaneously determining the thermodynamic temperature of remote objects by continuous determination of the emissivity, the reflectivity, and optical constants, as well as the apparent or brightness temperature of the sample with a single instrument. The emissivity measurement is preferably made by a complex polarimeter including a laser that generates polarized light, which is reflected from the sample into a detector system. The detector system includes a beamsplitter, polarization analyzers, and four detectors to measure independently the four Stokes vectors of the reflected radiation. The same detectors, or a separate detector in the same instrument, is used to measure brightness temperature. Thus, the instrument is capable of measuring both the change in polarization upon reflection as well as the degree of depolarization and hence diffuseness. This enables correction for surface roughness of the sample and background radiation, which could otherwise introduce errors in temperature measurement.
Abstract:
A reference system utilizes pulsed arc light excitation which excitation pulses are directed onto a flow cell containing a fluorescent dye. Fluorescent light emitted from the dye is guided to a photomultiplier tube which converts it to electrical pulses. A portion of each excitation light pulse is guided by a light pipe onto a PIN diode light detector which converts these light signals to electrical pulses. A LED reference light source is pulsed to generate a plurality of reference light pulses one of which occurs between each excitation pulse. A portion of each of these pulses is guided to each of the two light detectors and two more series of electrical pulses are generated. A microprocessor then reads the four electrical pulses resulting from each pair of light pulses and performs a computation on the resulting numbers which indicates the relative concentration of the target concentration being assayed. An optical system masks the excitation light pulses and the emitted light pulses to minimize the amount of scattered excitation light that gets into the emitted light optical channel and spatially integrates the images of the arc yielding the excitation light to control the stability of the image projected onto the photomultiplier tube. The light pipe and an output lens spatially integrates the image of the excitation light mask and focuses this light on the PIN diode so that the dancing image of the arc does not modulate with the variations of the PIN diode cathode and destabilize its output signal.