Abstract:
The present invention provides a charged particle beam apparatus that keeps the degree of vacuum in the vicinity of the electron source to ultra-high vacuum such as 10−8 to 10−9 Pa even in the state where electron beams are emitted using a non-evaporable getter pump and is not affected by dropout foreign particles.The present invention includes a vacuum vessel in which a charged particle source (electron source, ion source, etc.) is disposed and a non-evaporable getter pump disposed at a position that does not directly face electron beams and includes a structure that makes the non-evaporable getter pump upward with respect to a horizontal direction to drop out foreign particles into a bottom in a groove, so that the foreign particles dropped out from the non-evaporable getter pump do not face an electron optical system. Or, the present invention includes a structure that is covered by a shield means, or a means that is disposed immediately on a surface of the non-evaporable getter pump but at a position where the electron beams are not seen and has a concave structure capable of trapping the dropout foreign particles on a lower portion of the non-evaporable getter pump.
Abstract:
An object is to provide an electron emitting cathode achieving high luminance, low energy dispersion, and long life. It is therefore an object to provide a diamond electron emitting cathode graspable on a sufficiently stable basis, sharpened at the tip, and improved in electric field intensity. A diamond electron emitting cathode 110 according to the present invention is partitioned into at least three regions, i.e., a front end region 203 intended for electron emission at a tip of columnar shape, a rear end region 201 intended for grasping opposite in the longitudinal direction, and a thinned intermediate region 202, a cross-sectional area of the rear end region is not less than 0.2 mm2, the tip of the front end region is sharpened, and a maximum cross-sectional area of the thinned intermediate region is not more than 0.1 mm2.
Abstract:
An electron gun includes an electron source configured to emit electrons. The electron source includes an electron emission region configured to emit the electrons and an electron emission restrictive region configured to restrict emission of the electrons. The electron emission restrictive region is located on a side surface of the electron source except an electron emission surface on a tip of the electron source and is covered with a different material from the electron source. The electron gun emits thermal field-emitted electrons by applying an electric field to the tip while maintaining a sufficiently low temperature to avoid sublimation of a material of the electron source. The material of the electron source may be lanthanum hexaboride (LaB6) or cerium hexaboride (CeB6). The electron emission restrictive region may be covered with carbon.
Abstract:
A charged particle accelerator in which discharge is less likely to occur between a charged particle source, and an extraction electrode, and an acceleration electrode without the need for increasing the capacity of a high voltage power supply for extraction. The charged particle accelerator includes a charged particle source which emits charged particles, an extraction electrode which extracts the charged particles from the charge particle source and an acceleration electrode which accelerates the extracted charged particles. A surge absorber is electrically connected between at least two of the charged particle source, the extraction electrode, and the acceleration electrode.
Abstract:
A stable cold field electron emitter is produced by forming a coating on an emitter base material. The coating protects the emitter from the adsorption of residual gases and from the impact of ions, so that the cold field emitter exhibits short term and long term stability at relatively high pressures and reasonable angular electron emission.
Abstract:
An apparatus for producing a beam of charged particles is provided, which comprises an emitter (1, 2) and a switching device (3) adapted to switch between first, second and third beam current levels, wherein the beam current at said first current level is suitable for writing a pixel of an image on the surface of a sample, the beam current at said second current level is suitable for not writing a pixel on the surface of said sample, and the beam current at said third current level is lower than the beam current at the second current level. Furthermore, a method of controlling the beam current of a charged particle beam is provided, comprising the steps of switching the beam current of said charged particle beam between first and second current levels, wherein the beam current at said first current level is suitable for writing a pixel of an image on the surface of a sample and the beam current at said second current level is suitable for not writing a pixel on the surface of said sample, and switching the beam current to a third voltage level, wherein the beam current at said third current level is lower than the beam current at the second current level.
Abstract:
A small-sized charged particle beam apparatus capable of maintaining high vacuum even during emission of an electron beam is provided. A nonevaporative getter pump is placed upstream of differential pumping of an electron optical system of the charged particle beam apparatus, and a minimum number of ion pumps are placed downstream, so that both the pumps are used in combination. Further, by mounting a detachable coil on an electron gun part, the inside of a column can be maintained under high vacuum with a degree of vacuum in the order of 10−8 Pa.
Abstract:
As a method of manufacturing an electron emitter having a pair of element electrodes formed on a substrate, a conductive film connected to both of the element electrodes, and an electron emission section formed in part of the conductive film, the method includes discharging a droplet of a function liquid containing a material for forming the conductive film onto a discharge surface of the substrate by a droplet device to adhere a liquid-state object to at least part of an area in which the conductive film is to be formed, drying the liquid-state object so as to make the liquid-state object become the conductive film, and forming an electron emission section in the conductive film by applying an current between the pair of element electrodes, wherein if accompanied by the drying to form the conduct film, the discharging the liquid-state object in a shape having a constricted part for forming a latent image section that has a relatively thin film thickness in a portion for forming the electron emitter.
Abstract:
This invention discloses an electrochemical method for the preparation of single atom tips to replace the traditional vacuum evaporation method. The invented method for preparation of single atom tips includes the following steps: A substrate single crystal metal wire etched electrochemically to form a tip. The surface of the metal tip is cleaned. A small quantity of noble metal is plated on the apex of the tip in low concentration noble metal electrolyte. Annealing in vacuum or in inert gas ambient to diffuse the additional electroplated noble metal atoms and thus a single atom tip is formed on the surface of the substrate. The present invention also discloses the single atom tip so prepared. The single atom tip of this invention has only a very small number of atoms, usually only one atom, at its apex.
Abstract:
A solid state sub-nanometer-scale electron beam emitter comprising a multi-layered structure having a nano-tip electron emitter and tunnel emission junction formed on substrate, an initial electron beam extraction electrode, a “nano-sandwich Einzel” electrode, and a topmost protective layer.