Abstract:
The present invention provides a mass spectrometer capable of breaking even a sample molecule having a large molecular weight by a CID process. In an embodiment of the present invention, the mass spectrometer includes an ionizing source 10 for turning a sample into ions, mass-separating sections 40 and 60 for mass-separating the sample ions, a detecting section 20 for detecting the mass-separated ions, and a collision section (collision cell) 51 located on an ion path extending from the ionizing source 10 through the mass-separating sections 40 and 60 to the detecting section 20. It also includes a cluster generator 30 for producing clusters of atoms or molecules. The clusters produced by the cluster generator 30 are introduced into the collision cell 51. The use of the clusters having a huge mass as the target gas in the CID process enables the collision energy of the sample ions to be efficiently assigned to the breaking of the ions.
Abstract:
Methods and apparatus for controlling a gas cluster ion beam formed from a plurality of process gases in a gas mixture. The methods and apparatus involve measuring gas analysis data relating to the composition of the gas mixture and modifying the irradiation of the workpiece in response to the detected parameter. The gas analysis data can be derived from samples of the composition of the gas mixture flowing from a gas source to the gas cluster ion beam apparatus or samples of the residual gases inside the vacuum vessel of the gas cluster ion beam apparatus.
Abstract:
An ion source is disclosed for providing a range of ion beams consisting of either ionized clusters, such as B2Hx+, B5Hx+, B18Hx+, B18Hx+, P4+ or As4+, or monomer ions, such as Ge+, In+, Sb+, B+, As+, and P+, to enable cluster implants and monomer implants into silicon substrates for the purpose of manufacturing CMOS devices, and to do so with high productivity. The range of ion beams is generated by a universal ion source in accordance with the present invention which is configured to operate in two discrete modes: an electron impact mode, which efficiently produces ionized clusters, and an arc discharge mode, which efficiently produces monomer ions.
Abstract:
A method for cluster fragmentation comprises the production of at least one cluster which contains a carrier substance and the fragmentation of the cluster into cluster fragments, with the cluster being loaded before the fragmentation with at least one reaction partner and the reaction partner being part of at least one cluster fragment after the fragmentation. A cluster beam system for performing the method, and applications of the cluster fragmentation for analysis and purification of surfaces, for analysis of clusters, and for the operation of ion thrusters are also described.
Abstract:
Apparatus and methods for improving processing of workpieces with gas-cluster ion beams and modifying the gas-cluster ion energy distribution in the GCIB. In a reduced-pressure environment, generating an energetic gas-cluster ion beam and subjecting the beam to increased pressure region.
Abstract:
A method and device for mass spectrometry analysis, wherein a mass spectrometer is adapted for use with helium droplets, as an ionization site medium, with a proton being initially captured by a large helium droplet (˜10,000 helium atoms) and then cooled evaporatively to 0.4 Kelvin. The protonated helium droplet then picks up a neutral molecule of interest and the neutral molecule is protonated inside of the droplet with the liquid helium droplet acting as a heat bath to provide rapid cooling of the newly formed protonated molecule. As a result, there is essentially no energy available, at 0.4 Kelvin, for the protonated molecule to fragment. Remaining liquid helium is removed and the stably maintained protonated molecule is detected by a mass spectrometer. Since the molecules do not fragment when protonated (ionized), each compound in a mixture analyses gives one mass and the number of ions of a particular mass detected is directly proportional to the molar percentage of that mass in the sample. The device for effecting the method, comprises the elements of: (1) Helium cluster or droplet source; (2) Proton source for introduction of protons to the droplet (i.e., ionization); (3) atmospheric pressure (AP) Source for reduction of pressure to form a low pressure stream; (4) Cell pick-up elements where compound molecules are protonated or ionized at low temperature; (5) Desolvation area for removal of residual helium; and (6) Mass spectrometer and detector.
Abstract:
Clusters, such as Argon gas clusters, provided by a cluster source are doped in a water pick-up cell, and subsequent electron impact ionization of the doped clusters in a mass spectrometer or gas analyzer produce ionized cluster fragments that retain water. Water is supplied under pressure to the pick-up cell disposed within a vacuum chamber, and the water pressure is metered by a metering valve and monitored by a pressure gauge. A vacuum pump is coupled to the vacuum chamber that generates a vacuum within the vacuum chamber and pick-up cell. Interaction between the gas clusters and the water in the pick-up cell produces doped clusters, some of which retain water. The electron impact ionized doped cluster fragments are analyzed using the mass spectrometer or gas analyzer permits determination (detection) of the mean cluster size of the clusters. The variation in intensity of the water-containing fragments versus water pressure in the pick-up cell exhibits a Poisson behavior, from which the cross-section and mean cluster size is derived.
Abstract:
A solid surface smoothing apparatus for smoothing a solid surface with a gas cluster ion beam includes a plurality of gas cluster ion beam emitters, each emitter having an irradiation axis and emitting a respective gas cluster ion beam along its irradiation axis onto the solid surface, wherein irradiation axes of the plurality of the gas cluster ion beam emitters are not parallel to each other so as to expose substances in the solid surface transferred laterally by collisions with gas clusters to collisions with other gas clusters so that the substances do not remain on the solid surface.
Abstract:
A method of smoothing a solid surface with a gas cluster ion beam includes irradiating the solid surface with the gas cluster ion beam. The irradiating includes, when scratches which can be likened to a line-and-space pattern structure with widths and heights on the order of a submicrometer to micrometer are present on the solid surface, a process of emitting the gas cluster ion beam so as to expose substances, which remain on side-walls of the scratches due to lateral transferal caused by collisions with gas clusters, to other gas clusters, and the gas cluster ion beam diverges non-concentrically and/or non-uniformly.
Abstract:
A mass spectrometer comprising means for producing a primary beam of ions for bombarding a sample under vacuum, and a detector for detecting a secondary beam of ions released from the sample. The primary beam of ions includes water clusters where each water cluster contains between 1 and 10,000 water molecules.