Abstract:
An asymmetric x-ray tube. In one example embodiment, an x-ray tube includes an evacuated enclosure, a cathode assembly at least partially positioned within the evacuated enclosure and defining a first axis, and an anode assembly at least partially positioned within the evacuated enclosure and defining a second axis. The anode assembly includes a rotating anode having a focal spot. The focal spot and the second axis define a plane. The first axis is positioned beneath the plane.
Abstract:
An X-ray tube (260) is provided which is adapted to generate X-ray beams (258). The X-ray tube may comprise electrostatic grids (256) for focal spot deflection in x-direction, wherein the electrostatic grids are mounted on either side of the cathode (250). Further the X-ray tube may comprise electromagnetic coils (260) for focal spot deflection in y-direction, wherein said electromagnetic coils forming a dipole, are mounted external to the X-ray tube and are positioned between the cathode and the target of the anode (206), so that the electron beam (255) passes between its poles. The electrostatic grids and the electromagnetic coils are arranged separately from each other and provide for a combination of electrostatic x-deflection in tandem with electromagnetic z-deflection.
Abstract:
An asymmetric x-ray tube. In one example embodiment, an x-ray tube includes an evacuated enclosure, a cathode assembly at least partially positioned within the evacuated enclosure and defining a first axis, and an anode assembly at least partially positioned within the evacuated enclosure and defining a second axis. The anode assembly includes a rotating anode having a focal spot. The focal spot and the second axis define a plane. The first axis is positioned beneath the plane.
Abstract:
An x-ray tube assembly includes an x-ray tube envelope, a cathode assembly and a transmission anode assembly. The transmission anode assembly includes an x-ray generation layer and an anode substrate. The x-ray generation layer may be annular and mounted on a rotating disc-shaped anode substrate or cylindrical and mounted on a rotating and/or oscillating cylindrical anode substrate.
Abstract:
The X-ray tube having a rotating and linearly translating anode includes an evacuated shell having a substantially cylindrical anode rotatably mounted therein. The substantially cylindrical anode may be rotated through the usage of any suitable rotational drive, and the substantially cylindrical anode is further selectively and controllably linearly translatable about the rotating longitudinal axis thereof. A cathode is further mounted within the evacuated shell for producing an electron beam that impinges on an outer surface of the substantially cylindrical anode, thus forming a focal spot thereon. X-rays are generated from the focal spot and are transmitted through an X-ray permeable window formed in the evacuated shell.
Abstract:
An x-ray tube disclosed here in includes an emitter arranged to emit electrons on to a focal spot on a rotatable anode. The x-ray tube also includes a hollow tube arranged to receive electromagnetic radiation from the focal spot at one end of the hollow tube and transmit it to another end. The x-ray tube also includes two or more sensors arranged to detect the electromagnetic radiation through the hollow tube.
Abstract:
An x-ray tube assembly includes an x-ray tube envelope, a cathode assembly and a transmission anode assembly. The transmission anode assembly includes an x-ray generation layer and an anode substrate. The x-ray generation layer may be annular and mounted on a rotating disc-shaped anode substrate or cylindrical and mounted on a rotating and/or oscillating cylindrical anode substrate.
Abstract:
A method and apparatus for an x-ray apparatus. The x-ray apparatus comprises a vacuum tube. A cathode is located in the vacuum tube and capable of emitting electrons. A rotatable magnetic anode located in the vacuum tube, capable of being rotated by a motor located outside of the vacuum tube, and capable of generating an x-ray beam in response to receiving the electrons emitted by the cathode.
Abstract:
A computed tomography imaging system includes an x ray tube (12, 212) that injects an x ray conebeam into an examination region (14). The x ray tube (12, 212) includes a rotating cylindrical anode (30, 230, 330, 430) having a target outer surface region. The cylindrical anode (30, 230, 330, 430) rotates about a longitudinally aligned cylinder axis (32). Electrons are accelerated toward a selected spot on the target outer surface region of the cylindrical anode (30, 230, 330, 430). Electrostatic or electromagnetic deflectors (64, 68) sweep the selected spot back and forth across the target outer surface region of the cylindrical anode (30, 330, 430). The imaging system further includes a rotating gantry (22) that revolves the x ray tube (12, 212) about the examination region (14) around a rotation axis that is parallel to the cylindrical axis, and an x-ray detector (16) arranged to detect x rays after said x rays pass through the examination region (14).
Abstract:
An x-ray radiator has a vacuum housing that can rotate around an axis, a cathode that thermionically emits electrons upon irradiation thereof by a laser beam, an anode that emits x-rays upon being struck by the electrons, an insulator that is part of the vacuum housing and that separates the cathode from the anode, electrodes or terminals to apply a high voltage between the anode and the cathode to accelerate the emitted electrons toward the anode to form an electron beam, a drive arrangement for rotation of the vacuum housing around its axis, an arrangement for cooling components of the x-ray radiator, and an arrangement that directs and focuses the laser beam from a stationary source that is arranged outside of the vacuum housing onto a spatially stationary laser focal spot on the cathode.