Abstract:
A power semiconductor module arrangement includes a semiconductor module having a controllable power semiconductor component, a first printed circuit board (PCB) arranged outside the semiconductor module, and a control unit arranged outside the semiconductor module and having a second PCB. The control unit is configured to control the controllable power semiconductor component. The controllable power semiconductor component has a first load terminal and a second load terminal between which a load path of the power semiconductor component is formed, and also a control terminal for controlling the load path. The first PCB has a conductor track connected in series with the load path. The first and second PCBs are spaced apart from one another and electrically connected to one another by a pin.
Abstract:
The invention relates to a circuit board (1a, 1b, 1c), particularly for a power-electronic module (2), comprising an electrically-conductive substrate (3) which consists, at least partially and preferably entirely, of aluminium and/or an aluminium alloy. On at least one surface (3a, 3b) of the electrically-conductive substrate (3), at least one conductor surface (4a, 4b) is arranged in the form of an electrically-conductive layer applied preferably using a printing method and more preferably using a screen-printing method, said conductor surface (4a, 4b) being in direct electrical contact with the electrically-conductive substrate (3).
Abstract:
An electric connector that is particularly suitable for connecting printed circuit boards, wherein the connector has several flat conductors that are spaced apart from each other and that are embedded in an electrically insulating material to form an insulation zone in which the flat conductors extend parallel to each other and at their ends each with an exposed portion project over the transverse edges of the insulation zone. Here, it is provided that each of the flat conductors, within the insulation zone, has at least one first portion that is arranged between two second portions, wherein the first portion has a smaller thickness than the second portions.
Abstract:
An electronic device connection unit includes a substrate and a plurality of signal pads on the substrate configured to send signals from an electronic device to a driving printed circuit board (PCB). One or more active ground pads on the substrate are configured to connect at least the driving PCB to a reference voltage of the electronic device. One or more dummy ground pads on the substrate are configured to connect to the reference voltage of the electronic device without extending onto the driving PCB. One or more connectors are connected to the one or more dummy ground pads, where each of the one or more connectors is configured to electrically couple at least a subset of the one or more dummy ground pads to the one or more active ground pads.
Abstract:
A microelectronic 3D packaging structure and a method of manufacturing the same are introduced. The microelectronic 3D packaging structure includes a first board with a plurality of a first edges and disposed with a first electronic device; a second board with a plurality of a second edges and disposed with a second electronic device, wherein at least one second edge of the second board is jointed to at least one first edge of the first board to form a joint line; and a joint connection portion disposed at the joint line of the two adjacent boards and adapted to function as a connection path for transmitting signals.
Abstract:
A system and apparatus for monitoring and control of the operation of various types of industrial plants, including power plants, nuclear power plants and plants including various types of mechanical, electrical and chemical machinery. The invention employs modular non-microprocessor based, non-software based digital hardware that enables communication between sensors and control logic and between the control logic and actuators that control a functional aspect of each plant.
Abstract:
A display device includes: a backlight chassis; and a circuit substrate having a substrate rear surface facing the chassis with a circuit pattern formed on the substrate rear surface and having a part held with respect to the chassis, the chassis having a drawn part with which an edge of the source substrate makes contact when the source substrate is displaced.
Abstract:
A system and apparatus for monitoring and control of the operation of various types of industrial plants, including power plants, nuclear power plants and plants including various types of mechanical, electrical and chemical machinery. The invention employs modular non-microprocessor based, non-software based digital hardware that enables communication between sensors and control logic and between the control logic and actuators that control a functional aspect of each plant.