Abstract:
A lightweight radio/CD player for vehicular application is virtually “fastenerless” and includes a case and frontal interface formed of polymer based material that is molded to provide details to accept audio devices such as playback mechanisms (if desired) and radio receivers, as well as the circuit boards required for electrical control and display. The case and frontal interface are of composite structure, including an insert molded electrically conductive wire mesh screen that has been pre-formed to contour with the molding operation. The wire mesh provides EMC, RFI, BCI and ESD shielding and grounding of the circuit boards via exposed wire mesh pads and adjacent ground clips. The PCB architecture integrally forms a resilient beam portion adjacent an edge thereof carrying a grounding pad. The major components and subassemblies are self-fixturing during the final assembly process, eliminating the need for dedicated tools, fixtures and assembly equipment. The major components and subassemblies self-interconnect by integral guide and connection features effecting “slide lock” and “snap lock” self-interconnection.
Abstract:
A flexible wiring board is formed with a first mounting surface, a first erected surface portion, a relay portion, a second erected surface portion and a second mounting surface. The first erected surface portion and the second erected surface portion are positioned on the same plane. The second mounting surface is fixed. When the first mounting surface is moved in the X-axis direction, the force in the X-axis direction acts on the relay portion as a force from a direction outside of the plane since the first erected surface portion and the second erected surface portion are positioned on the same plane. Therefore, the relay portion is bent and a suppressed reaction force acts on the first mounting surface and on the second mounting surface.
Abstract:
A wiring board used for various electronic apparatuses, an input device such as an optically transparent touch panel using the wiring board, and a method of manufacturing the input device. A plurality of electrodes provided at the side of one end of one principal surface of wiring board, wiring patterns coupled to electrodes, and a connector disposed region provided at the side of the other end of wiring board are provided. In this connector disposed region, connectors are disposed. In substantially the central portion of the connector disposed region, a concave portion is provided and in the vicinity of connectors, a bending portion is disposed. Furthermore, a cut portion is disposed between or in the vicinity of the plurality of connectors. The wiring board may thereby be manufactured with all conductive portions on one side and then, by bending. some connectors maybe be positioned on the other side.
Abstract:
An electrical connector assembly has a flexible circuit with a central portion that carries a contact field. Slots extending towards the central portion define a pair of strain arms that attach the flexible circuit to a clamp member. Forces transmitted to the strain arms are not communicated to the central portion of the flexible circuit.
Abstract:
A rigid-flex circuit board system that can be manufactured using less expensive and more reliable rigid circuit board methods and equipment, and can maintain rigidity and dimensional stability until the time when it is first desired to flex.
Abstract:
A rearview mirror assembly of the present invention includes a circuit board disposed behind the mirror. The circuit board may be a flexible circuit board and may include an LED mounted to project light through a transparent window in the flexible circuit board and through the mirror. The flexible circuit board may function as a mirror heater and may include conductive paths for connection to the LED and/or electrodes of an electrochromic mirror. The LED may include an LED chip mounted directly on the circuit board and encapsulated thereon by an encapsulant.
Abstract:
A connecting structure of a printed circuit board of a liquid crystal display (LCD) module includes a double side printed circuit board and a single side printed circuit board. With the design of the double side printed circuit board having a solder element with two solder surfaces with a plurality of plated through holes (PTHs), and the design of the opening neighboring the solder element, the conducting surface of the single side printed circuit board may easily accord with the structural requirements to select the corresponding solder surface for performing welding.
Abstract:
Probes for electronic devices are described. The probe is formed by ball bonding a plurality of wires to contact locations on a fan out substrate surface. The wires are cut off leaving stubs. A patterned polymer sheet having electrical conductor patterns therein is disposed over the stubs which extend through holes in the sheet. The ends of the wires are flattened to remit the polymer sheet in place. The wire is connected to an electrical conductor on the polymer sheet which is converted to a contact pad on the polymer sheet. A second wire is ball bonded to the pad on the polymer sheet and cut to leave a second stub. The polymer sheet is laser cut so that each second stub is free to move independently of the other second studs. The ends of the second stubs are disposed against contact locations of an electronic device, such as an FC chip, to test the electronic device.
Abstract:
An elastic printed board is provided so that stress applied by the silicon gel is absorbed by the printed board. Further, the printed board is formed to be so narrow that the stress may be escaped. On the other hand, the wires on which a high voltage is applied are patterned on respective printed boards. This serves to prevent discharge through the surface of the same printed board served as current passage. This design makes it possible to hermetically close the power module, prevent intrusion of moisture or contamination as well as displacement, transformation and crack of the cover plate.
Abstract:
An improved printed circuit board (PCB) includes first and second substrates, which are disposed being distanced or spaced mutually and in which at least one or more semiconductor chips are mounted, and a signal transmission part for providing a signal transmission path between the first and second substrates, the signal transmission part being extended out of a region having a size smaller than a maximum size of the first substrate within the first substrate, and being extended in the second substrate. In disposing two substrates in a spaced-apart structure of upper and lower positions, a length of flexible printed circuit (FPC) connecting the two substrates can be reduced, and an impedance mismatching caused in use of the FPC can be reduced.