Abstract:
A method of making a circuitized substrate which includes at least one and possibly several capacitors as part thereof. In one embodiment, the substrate is produced by forming a layer of capacitive dielectric material on a dielectric layer and thereafter forming channels with the capacitive material, e.g., using a laser. The channels are then filled with conductive material, e.g., copper, using selected deposition techniques, e.g., sputtering, electro-less plating and electroplating. A second dielectric layer is then formed atop the capacitor and a capacitor “core” results. This “core” may then be combined with other dielectric and conductive layers to form a larger, multilayered PCB or chip carrier. In an alternative approach, the capacitive dielectric material may be photo-imageable, with the channels being formed using conventional exposure and development processing known in the art.
Abstract:
Methods and systems for providing crosstalk compensation in a jack are disclosed. According to one method, the crosstalk compensation is adapted to compensate for undesired crosstalk generated at a capacitive coupling located at a plug inserted within the jack. The method includes positioning a first capacitive coupling a first time delay away from the capacitive coupling of the plug, the first capacitive coupling having a greater magnitude and an opposite polarity as compared to the capacitive coupling of the plug. The method also includes positioning a second capacitive coupling at a second time delay from the first capacitive coupling, the second time delay corresponding to an average time delay that optimizes near end crosstalk. The second capacitive coupling has generally the same overall magnitude but an opposite polarity as compared to the first capacitive coupling, and includes two capacitive elements spaced at different time delays from the first capacitive coupling.
Abstract:
An electronic apparatus that can prevent occurrence of crosstalk between different differential signals on a printed circuit board on which a wiring pattern of a differentially operated signal line is formed, and reduce unnecessary radiation noises. First and second wiring patterns are disposed on the printed circuit board and through which differentially operated signals are transmitted, and the first and second wiring patterns are electrically connected to first and second connection terminals, respectively. An electronic component is disposed on the printed circuit board, and includes first and second terminals electrically connected to the first and second wiring patterns, respectively. The first and second terminals of the electronic component are disposed on the printed circuit board, respectively, so that the first and second wiring patterns do not intersect each other.
Abstract:
In an example embodiment, an electronics package includes one or more insulating layers and an electrically conductive transmission line. The electrically conductive transmission line includes a signal trace disposed substantially parallel to the one or more insulating layers. The electrically conductive transmission line further includes one or more signal vias electrically coupled to the signal trace. The one or more signal vias are configured to pass through at least a portion of the one or more insulating layers. The electronics package further includes one or more electrically conductive ground planes substantially parallel to the one or more insulating layers. The ground planes include one or more signal via ground cuts. The one or more signal via ground cuts provide clearance between the one or more signal vias and the one or more ground planes.
Abstract:
A molding pin for a metal die is prevented from breaking, solder is surely deposited, and thus, a circuit pitch can be reduced to the limit. On the front plane of a circuit board, prescribed circuit patterns made of a conductive material are formed, and on the rear plane, prescribed circuit patterns are also formed. On the circuit board, a through hole is formed to carry electricity between the circuit patterns on both planes. The inner shape of the through hole is narrow in a direction between the adjacent circuit patterns and wide in a circuit extending direction.
Abstract:
According to one exemplary embodiment, a circuit board for reducing dielectric loss, conductor loss, and insertion loss includes a pair of transmission lines. The pair of transmission lines has sufficient thickness to cause substantial broadside electromagnetic coupling between the pair of transmission lines, where the pair of transmission lines is sufficiently separated from a ground plane of the circuit board so as to cause negligible electromagnetic coupling to the ground plane relative to the substantial broadside electromagnetic coupling. The pair of transmission lines thereby reduce dielectric loss, conductor loss, and insertion loss for signals traversing through the transmission line pair. The pair of transmission lines can be separated from the ground plane by, for example, at least 50.0 mils.
Abstract:
A circuit board that can decrease thermal stress acting between a semiconductor element and a board in association with temperature alteration and has high mechanical strength (rigidity) as a whole board (including a multilayer wiring layer) is provided. Ceramic base material having a coefficient of thermal expansion close to that of a semiconductor element and inner layer wiring are integrally sintered, and the circuit board is configured so that fine-lined conductor structure corresponding to a multilayer wiring layer in the inner layer wiring has predetermined width, intralayer interval and interlayer interval. Thereby, thermal stress acting between a semiconductor element and the board when the board is exposed to temperature alteration in a condition where it is joined with the semiconductor element is suppressed, rigidity of the board is maintained, and its reliability against temperature cycle is increased.
Abstract:
An electrical signal connection, an electrical signaling system, and a method of connecting printed circuit boards. The electrical signal connection having a first conductive via and a second conductive via disposed in a first printed circuit board. A first conductive trace with a first end and a second end has the first end electrically coupled to the first conductive via at a first distance from the top surface of the first printed circuit board. The second end of the first conductive via is electrically coupled to the second printed circuit board. A second conductive trace with a first end and a second end has the first end being electrically coupled to the second conductive via at a second distance from the top surface of the first printed circuit board. The second end being is electrically coupled to the second printed circuit board.
Abstract:
An exemplary printed circuit board includes a substrate, a differential transmission line, and at least two weld pad pairs. The differential transmission line and the at least two weld pad pairs are disposed on the substrate. The differential transmission line includes two parallel signal conductors disposed on the substrate. Each of the two signal conductors is electrically connected to an edge of one of the weld pads of a respective pair of the at least two weld pad pairs. Thereby, the two signal conductors of the differential transmission line can extend in the same distance anywhere, particularly in the position where the two signal conductors pass the two weld pad pairs. As a result, the coupling performance and the capability of the differential transmission line to resist electromagnetic interference are both enhanced.
Abstract:
A midplane has a first side to which contact ends of a first differential connector are connected and a second side opposite the first side to which contact ends of a second differential connector are connected. The midplane includes a plurality of vias extending from the first side to the second side, with the vias providing first signal launches on the first side and second signal launches on the second side. The first signal launches are provided in a plurality of rows, with each row having first signal launches along a first line and first signal launches along a second line substantially parallel to the first line. The second signal launches are provided in a plurality of columns, with each column having second signal launches along a third line and second signal launches along a fourth line substantially parallel to the third line.