Abstract:
A method for fabricating connection terminals of a circuit board is proposed. The method involves providing a circuit board with connection pads thereon, forming an insulating layer with first openings over the circuit board to expose the connection pads, forming a conductive layer over the insulating layer, forming a first resist layer with second openings over the conductive layer to partially expose the conductive layer, electroplating a first metal connection layer on the exposed conductive layer, followed by forming a second resist layer with third openings over the first conductive layer to partially expose the first metal connection layer, and electroplating a second metal connection layer on the exposed first connection layer, and removing portions of the first and second resist layers and conductive layer covered by the first and second resist layers to form metal connection material of different heights and sizes on the connection pads.
Abstract:
A ceramic multilayer substrate has a ceramic laminate including a plurality of ceramic layers laminated, having a first main surface, and including internal circuit elements disposed in the inside, a resin layer having a bonding surface in contact with the first main surface of the ceramic laminate and a mounting surface opposite to the bonding surface, external electrodes, each disposed on the mounting surface of the resin layer and electrically connected to at least one of the internal circuit elements of the ceramic laminate, and a ground electrode, a dummy electrode, or capacitor electrodes disposed at an interface between the first main surface of the ceramic laminate and the bonding surface of the resin layer or in the inside of the resin layer.
Abstract:
Highly reliable interconnections for microelectronic packaging. In one embodiment, dielectric layers in a build-up interconnect have a gradation in glass transition temperature; and the later applied dielectric layers are laminated at temperatures lower than the glass transition temperatures of the earlier applied dielectric layers. In one embodiment, the glass transition temperatures of earlier applied dielectric films in a build-up interconnect are increased through a thermosetting process to exceed the temperature for laminating the later applied dielectric films. In one embodiment, a polyimide material is formed with embedded catalysts to promote cross-linking after a film of the polyimide material is laminated (e.g., through photo-chemical or thermal degradation of the encapsulant of the catalysts). In one embodiment, the solder resist opening walls have a wettable layer generated through laser assisted seeding so that there is no gap between the solder resist opening walls and no underfill in the solder resist opening.
Abstract:
A method and apparatus for supporting a microelectronic substrate. The apparatus can include a microelectronic substrate and a support member carrying the microelectronic substrate. The apparatus can further include a first connection structure carried by the support member. The first connection structure can have a first bond site configured to receive a flowable conductive material, and can further have at least two first elongated members connected and extending outwardly from the first bond site. Each first elongated member can be configured to receive at least a portion of the flowable conductive material from the first bond site, with none of the first elongated members being electrically coupled to the microelectronic substrate. The assembly can further include a second connection structure that is electrically coupled to the microelectronic substrate and that can include second elongated members extending away from a second bond site. The number of second elongated members can be equal to the number of first elongated members.
Abstract:
An electronic package and method of making the electronic package is provided. A layer of dielectric material is positioned on a first surface of a substrate which includes a plurality of conductive contacts. At least one through hole is formed in the layer of dielectric material in alignment with at least one of the plurality of conductive contacts. A conductive material is positioned in the at least one through hole substantially filling the through hole. At least one conductive member is positioned on the conductive material in the through hole and in electrical contact with the conductive material. The electronic package improves field operating life of an assembly which includes a semiconductor chip attached to a second surface of the substrate and a printed wiring board attached to the conductive members.
Abstract:
A bonding pad structure of a display device. A first conductive layer is formed overlying a substrate, a protection layer is formed overlying the substrate and the first conductive layer, and a second conductive layer is formed overlying the protection layer. An opening structure penetrates the second conductive layer and the protection layer to expose the first conductive layer. A third conductive layer is formed overlying the second conductive layer to contact the sidewall and bottom of the opening structure. Thus, the third conductive layer is electrically connected to the second conductive layer to provide a first electrical-connection path, and the third conductive layer is electrically connected to the first conductive layer to provide a second electrical-connection path.
Abstract:
A method for forming ball pads of a BGA substrate is disclosed. A substrate is provided with a plurality of pad terminals on its surface. A solder mask is formed on the surface and has a plurality of openings to expose the pad terminals. A metal layer for redefining ball pads is formed on the solder mask. An etching mask is formed on the metal layer, the etching mask has a plurality of covering portions which are aligned with the pad terminals and larger than the openings of the solder mask. The metal layer is etched to form a plurality of redefined ball pads under the etching mask. The redefined ball pads cover the pad terminals of the substrate and extend around the openings of the solder mask so that solder balls can be jointed with the redefined ball pads to avoid contacting the solder mask and the pad terminals by redefinition of bonding area of solder balls.
Abstract:
The present invention provides a method of fabricating a circuit substrate. First, a substrate having first pads and second pads is provided, wherein the first pads and second pads are arranged respectively on a first surface and a second surface of the substrate. The first pads are electrically connected to the second pads. Next, a conductive seed layer is formed on the second surface of the circuit substrate. Thereafter, a first conductive layer and a second conductive layer are electroplated respectively over the first pads and the second pads. Afterwards, the conductive seed layer is patterned.
Abstract:
A method of applying an edge electrode pattern to a touch screen panel including printing an edge electrode pattern on decal paper; applying a cover coat over the electrode pattern; removing the decal paper; and transferring the edge electrode pattern to a touch screen panel. A decal to be used in accordance with this method.
Abstract:
In a wiring substrate of the present invention in which a bump of an electronic parts is bonded to a connection pad of a wiring pattern provided on an insulating film by an ultrasonic flip-chip packaging, a via hole into which a via post acting as a strut to support the connection pad upon the ultrasonic flip-chip packaging is filled is arranged in the insulating film under the connection pad.