Abstract:
A method of generating ejection pattern data for a plurality of nozzles for use in selectively ejecting functional liquid droplets from the nozzles is to draw on ore more one chip-forming area on a workpiece. The method includes a pixel-setting step of setting pixel information concerning an array of pixels in the chip-forming areas, a chip-setting step of setting chip information concerning an array of the chip-forming areas on the workpiece, a nozzle-setting step of setting nozzle information concerning an array of the nozzles, and a data-generating step of generating the ejection pattern data for the nozzles from the pixel information, the chip information, and the nozzle information, based on a positional relationship between the workpiece and the functional liquid droplet ejection head. The ejection pattern data are easily and quickly generated for the nozzles arranged in an array in the plurality of functional liquid droplet ejection heads.
Abstract:
A method for forming a coating film on an internal surface of an elongated tube, includes longitudinally holding the elongated tube, applying a coating solution to the internal surface of the elongated tube; and drying the coating solution while carrying out a heat process for sequentially heating the elongated tube by using a heat source. The heat process includes adjusting the descending rate of the heat source so that a through-hole in the elongated tube is clogged with the coating solution whose viscosity is reduced by heating of the heat source, and sucking the through-hole in the elongated tube from the lower side thereof so that a portion of the through-hole that is clogged with the coating solution moves downwards along the elongated tube.
Abstract:
The present invention provides a green light-emitting phosphor for a light-emitting device excited by vacuum ultraviolet rays, a light-emitting device, and a method of preparing the same. The green light-emitting phosphor is represented by the formula AxB4-2xO6-2x:Mny, wherein A is Mg, Zn, Ca, or Li, B is Al or Ga, 0.6≦x≦1.4, and 0.01≦y≦0.1. The phosphor has excellent brightness, color purity, and discharging characteristics, and a short decay time. In one embodiment, the phosphor has a stable spinel structure, and is stable with regard to external influence such as heat, ion bombardment, and vacuum ultraviolet rays. Longer-lived light-emitting devices are also disclosed.
Abstract translation:本发明提供一种用于通过真空紫外线激发的发光器件的绿色发光荧光体,发光器件及其制备方法。 绿色发光荧光体由下式表示:其中,B为4〜 SUB>,其中A是Mg,Zn,Ca或Li,B是Al或Ga,0.6 <= x <= 1.4和0.01 <= y <= 0.1。 该荧光体的亮度,色纯度,放电特性优异,衰减时间短。 在一个实施方案中,磷光体具有稳定的尖晶石结构,并且对于诸如热,离子轰击和真空紫外线的外部影响是稳定的。 还公开了更长寿命的发光器件。
Abstract:
The present invention relates to a plasma display panel, and more particularly, to an electrode structure of a plasma display panel capable of improving brightness and efficiency. According to the present invention, in the plasma display, assuming that a distance from the center of a discharge region between a pair of transparent electrodes to the center of metal electrodes is “d” and a distance between both ends of the pair of the transparent electrodes is “h”, a location on the transparent electrodes of metal electrodes satisfies d
Abstract:
A plasma display apparatus includes a plurality of display element electrodes each constituted of a pair of electrode segments having linear edges opposing each other, with a predetermined distance provided therebetween, the width of each of the electrode segments becoming narrower in the direction away from the associated one of the linear edges. The plasma display apparatus also includes a barrier structure, the inner surfaces of which being disposed along the outer ends of the plurality of display element electrodes and thereby defining a plurality of cells each of which is to be activated by the associated one of the plurality of display element electrodes so as to emit light. In the plasma display apparatus, ultraviolet rays caused by a discharge are efficiently transmitted to phosphor members on the surfaces of cells to emit light with a reduced loss of energy.
Abstract:
A plasma display panel having increased contrast and sharpness of image displayed on the panel. The panel includes (1) a front plate and a back plate in parallel, with a discharge gas between the plates, (2) plural pairs of composite display electrodes, each display electrode including a sustain electrode and a bus electrode, (3) a dielectric layer covering the display electrodes, and a protective film over the dielectric layer, (4) address electrodes on the back plate at right angles to the display electrode pairs, and a dielectric layer covering the address electrodes, and (5) linear ribs between the address electrodes, with phosphor layers between the adjacent linear ribs to extend intermittently in the lengthwise direction of the ribs for each pixel. Each phosphor layer covers both the dielectric layer surface and the surface of the linear ribs within each pixel. No phosphor layers are in the regions between adjacent pixels.
Abstract:
A plurality of row electrodes and a plurality of column electrodes are provided so as to intersect with each other to form a pixel at every intersection. A phosphor layer is provided along each of the column electrodes. The phosphor layer is disposed so that three unit luminous areas of red, green and blue are provided in each pixel. Three phosphor layers for a first pixel on a display line are disposed in order of red, green and blue, and three phosphor layers for a second pixel adjacent the first pixel are disposed in order of blue, green and red.
Abstract:
Disclosed is a method for producing a patterned calcined inorganic film such as an electroconducting or insulating (non-conductive) film, particularly a plasma display panel, embracing a calcining step. To produce a patterned calcined inorganic film without inducing warpage, shrinkage of line width, or breakage of patterned lines, a patterned film formed on a substrate with a composition containing a heat decomposable binder and particles of an inorganic material is covered, prior to the calcining step, with a coating film of a heat decomposable resin composition capable of hardening or drying at a temperature lower than the temperature at which the heat decomposable binder is thermally decomposed and further capable of being burned off below the highest temperature of the calcining profile and thereafter the calcining step is performed.
Abstract:
An electrode for a plasma display panel (PDP) in which an electrode having a high adhesive power is formed on a glass substrate of a color plasma display panel and a method for forming the same. The electrode for the PDP includes a metal ceramic thin film formed between a metal electrode and a dielectric substrate. The method includes steps of forming a metal ceramic thin film on a predetermined portion of the dielectric substrate and forming an electrode having the same metal element as the metal ceramic thin film on the metal ceramic thin film.