Abstract:
A method of manufacturing a coated medical device, such as a medical guide wire, including at least applying a first colored coating to at least a first portion of an outer surface of a medical guide wire, securing a first end of the medical guide wire, and for each a designated quantity of turns, turn a second end of the medical guide wire upon a longitudinal axis of the medical guide wire. The method of manufacturing also includes securing the second end of the medical guide wire, blocking at least a first portion of the coated surface of the medical guide wire, applying a second contrasting colored coating to at least a second, unblocked portion of the outer surface of the medical guide wire and releasing the first end and the second end of the medical guide wire to display at least one spiral marking formed along a length of the medical guide wire.
Abstract:
A coated string for a stringed device which includes a coating applied to the surface of the string. The coating includes a base layer bonded to the surface of the string and an at least partially transparent low-friction top coat applied to the base layer. The base layer includes heat activated pigments that change color when heated above a color shifting temperature. In one embodiment, the color of the pigment in one area contrasts with the color of the pigment in an adjacent area without otherwise affecting the low-friction surface of the coating. The areas of different color created in locations along the length of the low-friction coated string.
Abstract:
A reinforcing underlayment including dry uniform particles evenly applied to a wet bonding material layer on a surface of a substrate. The substrate, including the layers, is then cured to harden the one or more of the layers. A final coating or topcoat is applied to the cured surface of the substrate. The dry particles are evenly distributed onto the bonding material layer creating a uniform surface for subsequent coatings. The dry particles increase the strength of the liquid coatings increasing solid particle density within the coating system and thereby imparting properties not available for the liquid coatings. The present invention enables a user to easily introduce very heavy, dense, strong particles into a liquid coating and allows the user to apply very dense, heavy particles into and onto a wet bonding material layer followed by a subsequent wet topcoat layer which is cured as one contiguous material with reinforcement and underlayment strengthening coming from the added, dry particles.
Abstract:
A reinforcing underlayment including dry uniform particles evenly applied to a wet bonding material layer on a surface of a substrate. The substrate, including the layers, is then cured to harden the one or more of the layers. A final coating or topcoat is applied to the cured surface of the substrate. The dry particles are evenly distributed onto the bonding material layer creating a uniform surface for subsequent coatings. The dry particles increase the strength of the liquid coatings increasing solid particle density within the coating system and thereby imparting properties not available for the liquid coatings. The present invention enables a user to easily introduce very heavy, dense, strong particles into a liquid coating and allows the user to apply very dense, heavy particles into and onto a wet bonding material layer followed by a subsequent wet topcoat layer which is cured as one contiguous material with reinforcement and underlayment strengthening coming from the added, dry particles.
Abstract:
An electrosurgical device coated with powder coatings including a silicone resin and siloxane additive without fluoropolymers. In the powder coatings, the silicone resin is methyl phenyl silicone or phenyl silicone or methyl polysiloxane or phenyl alkyl polysiloxane resin and the additive is either methyl alkyl polysiloxane or dimethyl polysiloxane. This coating is applied to the surfaces of an electrosurgical device minimize the build-up of charred tissue on the surfaces of the electrosurgical device.
Abstract:
An electrosurgical device coated with powder coatings including a silicone resin and siloxane additive without fluoropolymers. In the powder coatings, the silicone resin is methyl phenyl silicone or phenyl silicone or methyl polysiloxane or phenyl alkyl polysiloxane resin and the additive is either methyl alkyl polysiloxane or dimethyl polysiloxane. This coating is applied to the surfaces of an electrosurgical device minimize the build-up of charred tissue on the surfaces of the electrosurgical device.
Abstract:
An electrosurgical device coated an epoxy modified rigid silicone powder coating which includes a solvent-free hydroxyl functional solid phenyl silicone resin in the range of about 40% to about 60% parts per weight of the coating; a calcium metasilicate in the range of about 20% to about 40% parts per weight of the coating; an epoxy cresol novalac resin in the range of about 5% to about 15% parts per weight of the coating; an ultra-fine air micronized muscovite mica in the range of about 0% to about 10% parts per weight of the coating; a 60% active powder version of a methyl alkyl polysiloxane in the range of about 3% to about 7% parts per weight of the coating; a high temperature calcination of coprecipitated compound with manganese-copper-iron in the range of about 0% to about 10% parts per weight of the coating; an o-cresol novolac resin in the range of about 0.5% to about 3% parts per weight of the coating; and an acrylate copolymer in the range of about 0.5% to about 3% parts per weight of the coating;. This coating is applied to the surfaces of an electrosurgical device minimize the build-up of charred tissue (i.e., eschar) on the surfaces of the electrosurgical device.
Abstract:
A reinforcing underlayment including dry uniform particles evenly applied to a wet bonding material layer on a surface of a substrate. The substrate, including the layers, is then cured to harden the one or more of the layers. A final coating or topcoat is applied to the cured surface of the substrate. The dry particles are evenly distributed onto the bonding material layer creating a uniform surface for subsequent coatings. The dry particles increase the strength of the liquid coatings increasing solid particle density within the coating system and thereby imparting properties not available for the liquid coatings. The present invention enables a user to easily introduce very heavy, dense, strong particles into a liquid coating and allows the user to apply very dense, heavy particles into and onto a wet bonding material layer followed by a subsequent wet topcoat layer which is cured as one contiguous material with reinforcement and underlayment strengthening coming from the added, dry particles.