Abstract:
A method of manufacturing an external force detection sensor in which a sensor element is formed by through-hole dry etching of an element substrate, and an electrically conductive material is used as an etching stop layer during the dry etching.
Abstract:
A method of manufacturing an external force detection sensor in which a sensor element is formed by through-hole dry etching of an element substrate, and an electrically conductive material is used as an etching stop layer during the dry etching.
Abstract:
An inertial sensor has an interior filled with a relatively low viscosity fill gas. To that end, the inertial sensor has a housing forming the noted interior, and a movable component within the interior. The inertial sensor also has the noted fill gas within the interior. The fill gas has a viscosity that is less than the viscosity of nitrogen under like conditions. For example, when subjected to the same temperatures and pressures, the fill gas has a viscosity that is less than the viscosity of nitrogen.
Abstract:
A method is described for producing surface micromechanical structures having a high aspect ratio, a sacrificial layer being provided between a substrate and a function layer, trenches being provided by a plasma etching process in the function layer, at least some of these trenches exposing surface regions of the sacrificial layer. To increase the aspect ratio of the trenches, an additional layer is deposited on the side walls of the trenches in at least some sections, but not on the exposed surface regions of the sacrificial layer. In addition, a sensor is described, in particular an acceleration sensor or a rotational rate sensor.
Abstract:
A proof mass (11) for a MEMS device is provided herein. The proof mass comprises a base (13) comprising a semiconductor material, and at least one appendage (15) adjoined to said base by way of a stem (21). The appendage (15) comprises a metal (17) or other such material that may be disposed on a semiconductor material (19). The metal increases the total mass of the proof mass (11) as compared to a proof mass of similar dimensions made solely from semiconductor materials, without increasing the size of the proof mass. At the same time, the attachment of the appendage (15) by way of a stem (21) prevents stresses arising from CTE differentials in the appendage from being transmitted to the base, where they could contribute to temperature errors.
Abstract:
A semiconductor dynamic quantity sensor, for example, an acceleration sensor is formed on a SOI substrate having an activation layer and a supporting layer with an oxide film interposed therebetween. A structure for the sensor is formed in the activation layer. An opening is formed in the supporting layer and the oxide film to expose the structure. In this sensor, stress layer is formed in the activation layer at a side contacting the oxide film. The stress layer is removed at a region facing the opening to prevent the structure from cambering.
Abstract:
The present invention provides a micro inertia sensor and a method of manufacturing the same, the micro inertia sensor includes a lower glass substrate; a lower silicon including a first border, a first fixed point and a side movement sensing structure; an upper silicon including a second border, a second fixed point being connected to a via hole, in which a metal wiring is formed, on an upper side, and an sensing electrode, which correspond to the first border, the first fixed point and the side movement sensing structure; a bonded layer by a eutectic bonding between the upper silicon and the lower silicon; and a upper glass substrate, being positioned on an upper portion of the upper silicon, for providing the via hole on which an electric conduction wiring is formed, thereby aiming at the miniaturization of the product and the simplification of the process.
Abstract:
A semiconductor accelerometer, including a weight and a cantilevered beam formed in a silicon semiconductor substrate as a frame having a (100) surface, and a strain sensing device formed in a surface portion near a support portion of the cantilevered beam, the silicon cantilevered beam having a triangular cross section defined by one (100) surface and two (111) surfaces or a pentagonal cross section defined by one (100) surface, two (110) surfaces and two (111) surfaces. A method for producing the semiconductor accelerometer is also disclosed.
Abstract:
A method embodiment includes providing a micro-electromechanical (MEMS) wafer including a polysilicon layer having a first and a second portion. A carrier wafer is bonded to a first surface of the MEMS wafer. Bonding the carrier wafer creates a first cavity. A first surface of the first portion of the polysilicon layer is exposed to a pressure level of the first cavity. A cap wafer is bonded to a second surface of the MEMS wafer opposite the first surface of the MEMS wafer. The bonding the cap wafer creates a second cavity comprising the second portion of the polysilicon layer and a third cavity. A second surface of the first portion of the polysilicon layer is exposed to a pressure level of the third cavity. The first cavity or the third cavity is exposed to an ambient environment.
Abstract:
Inertial sensor comprising a fixed part and at least one mass suspended from the fixed part and means of damping the displacement of the part suspended from the fixed part, said damping means being electromechanical damping means comprising at least one DC power supply source, one electrical resistor and one variable capacitor in series, said variable capacitor being formed partly by the suspended part and partly by the fixed part such that displacement of the suspended part causes a variation of the capacitance of the variable capacitor.