Abstract:
The present disclosure provides a diesel fuel composition containing DMC and multifunctional additives to reduce particulate emission, improve efficiency and be used in cold and/or hypoxia conditions.
Abstract:
Oil compositions derived from transgenic soybeans having a high concentration of oleic acid are described for use in various applications including use to enhance the low temperature pour characteristics of engine fluids. Such oil compositions are useful as lubricants, rail curve grease and engine penetrants.
Abstract:
The present invention relates to methods of improving the low temperature storage and performance properties of fatty acids and/or derivatives thereof, as well as compositions containing fatty acids and/or derivatives thereof having superior lower temperature storage and performance properties.
Abstract:
The present invention provides a compound as a cold flow improver for a fuel composition, said compound being an ester of (i) a polyol wherein the polyol is selected from at least pentaerythritol, polymers thereof and mixtures thereof; and (ii) a fatty acid oligomer, wherein the fatty acid oligomer has a degree of polymerisation from 2 to 7. The ester compound can be used for reducing, preventing or inhibiting cold filter plugging in a diesel engine.
Abstract:
A fuel soluble additive for a gasoline engine, a method for improving performance of fuel injectors and a method for cleaning fuel injectors for a gasoline engine. The fuel soluble additive includes a quaternary ammonium salt derived from an amido amine containing at least one tertiary amino group and an epoxide, in the presence of a proton donor selected from a carboxylic acid and an alkyl phenol. The amido amine is made in a reaction medium that is substantially devoid of an acylating agent.
Abstract:
The reaction product resulting from the chemical reaction of an alkyl phenol with an acid or an anhydride selected from the group consisting of a saturated dicarboxylic acid, an unsaturated dicarboxylic acid, an anhydride of a saturated dicarboxylic acid, an anhydride of an unsaturated dicarboxylic acid, and combinations thereof, has been discovered to improve the properties of various fluids. In a non-limiting example, the reaction products may have an acid number from about 0 to about 50 that may improve the lubricity and/or corrosion of fuels and lubricants, such as hydrocarbon fuels and lubricants, when added thereto.
Abstract:
A composition for improving the combustion efficiency of an internal combustion engine. The composition includes a mixture of a hydrocarbon fuel and an organometallic soap selected from among several cerium-containing and ferric compounds. The cerium-containing compound or compounds increase the energy released during combustion of the fuel. The ferric compound or compounds coat an interior wall of a combustion chamber of the internal combustion engine to increase the power output of the engine by reducing the accumulation of residues deposited on the interior wall which interfere with the combustion of fuel.
Abstract:
The use of an oil-soluble mono-, di-, or tri-glyceride of at least one hydroxy polycarboxylic acid, or a derivative thereof, as an anti-wear additive and/or friction modifier in a non-aqueous lubricant composition and/or in a fuel composition. Also, a non-aqueous lubricant composition and a fuel composition for an internal combustion engine which comprise at least one additive which is an oil-soluble mono-, di-, or tri-glyceride of at least one hydroxy polycarboxylic acid, or a derivative thereof.
Abstract:
The present invention relates to catalysts, systems, and methods for producing products such as fuels and fuel additives from polyols. In an embodiment, the invention includes a method of producing a fuel additive, including combining a polyol and a component selected from the group consisting of alcohols and organic acids to form a reaction mixture and contacting the reaction mixture with a metal oxide catalyst at a temperature of greater than about 150 degrees Celsius. Other embodiments are also included herein.
Abstract:
This invention relates to functionalized monomers which are reacted with an enophilic reagent (e.g., maleic anhydride) to form an enophilic reagent modified functionalized monomer. The enophilic reagent modified functionalized monomer may be further reacted with one or more additional reagents (e.g., oxygen-containing reagents, nitrogen-containing reagents, metals or metal compounds). The invention relates to base oils which may comprise functional base oils. The invention relates to lubricants, functional fluids, fuels, dispersants, detergents and functional compositions (e.g., cleaning solutions, food products, etc.).