Abstract:
A surface hardening material being excellent in abrasion resistance and having impact resistance is provided. Provided are: a wear-resistant cobalt-based alloy containing 20.0 to 30.0 mass % of a sum of Mo and/or W, 0.8 to 2.2 mass % of B, 5.0 to 18.0 mass % of Cr, 5.0 mass % or less of a sum of Fe, Ni, Mn, Cu, Si and C, 1.0 mass % or less of Si, and 0.3 mass % or less of C, and the remainder comprising 55.0 to 70.0 mass % of Co and unavoidable impurities; and an engine valve coated with the same.
Abstract:
A configuration of a camshaft phaser (1) having a stator (2) and a rotor (3), the stator (2) and the rotor (3) being formed as sheet-metal parts and having integral shaped sheet-metal sections (12) for receiving a spring (4) and the spring ends (5, 6) thereof.
Abstract:
A universal multi-orientation bracket design for attaching solenoids to a housing of a hydraulically actuated variable valve system. The bracket having at least two sidewalls, an upper cross member, a cupped lower surface and at least one mounting flange. The cupped lower surface is shaped to insert a solenoid main body and gaps included in the side walls for a protruding solenoid connector.
Abstract:
A support element for the valve train of an internal combustion engine, having a hollow cylindrical housing that holds a displaceable piston. The piston has a hollow cylindrical pressure part and a pot-shaped work part axially adjacent thereto. An inner space of these parts forms a storage space for hydraulic medium. A high pressure space is defined by a base of the work part and the housing. The storage space and the high pressure space are connected hydraulically by a non-return valve with a ball for automatic lash compensation of the valve train. The piston is supported by a compression spring on the housing base, and a retaining ring is arranged radially between the pressure part and the housing, which limits axial travel of the piston. The ball is movably held in the base of the work part in an axial ball guide having first and second integrally formed ball seats.
Abstract:
A camshaft adjuster (1), which has a cover element (4), which has at least one deformation zone (7), which, when the cover element (4) is assembled with the input element (2) or the output element (3), is deformed in such a way that a preloading force acts, pressing the cover element (4) and the input element (2) or output element (3) against one another.
Abstract:
A reference angle detecting device includes a control shaft connected to a controlled object, an electric motor causing the control shaft to rotate via a worm gear mechanism, a stopper disposed on a motion track of a worm wheel, an angle sensor that can detect a rotation angle of the control shaft, and a controller. The stopper includes a spring member which is elastically deformable in an operation direction of the worm wheel. The controller drives the electric motor to operate so that the worm wheel may face the stopper, and stores the rotation angle at a time point when a change rate ω of the rotation angle θ detected by the angle sensor changes to a value less than a predetermined threshold ω1 as a reference angle θ0. Therefore, the reference angle can be detected with high accuracy for control of an angle of the control shaft.
Abstract:
The invention relates to a method for producing a composite component (12). At least one shaft (2) and at least one sintered part (1), preferably in the form of a rotor or a cam, are assembled into the composite component. In order to assemble the composite component, at least the following steps are carried out: —introducing the shaft (2) into a continuous bore (3) of the sintered part (1) and —calibrating the sintered part (1) at least by means of a calibrating die (4), furthermore preferably with the simultaneous application of an axial force onto the sintered part (1) by means of at least one upper punch (5) and at least one lower punch (7), wherein the shaft (2) can be found in the bore (3) of the sintered part (1) at least temporarily during the calibration process. The invention further relates to a composite component (12).
Abstract:
A method of manufacturing a valve for an internal combustion engine, comprises: (i) a primary step of forging a bulging portion at one end of a rod material to form a generally disk-shape valve head of the valve having a tapered periphery; (ii) an thickness adjustment step of machining an excessively thick portion of the valve head; and (iii) a secondary step of forging a peripheral region of the valve head to create radial slip deformations therein to form a valve face of the valve head. In the step of thickness adjustment, only the front end of the disk-shape valve head is machined without harming dense grain flow lines induced in the tapered face (16a) in the primary forging while advantageously saving the valve material and reducing thickness adjustment time. In the secondary forging, the hardness of the valve face is further enhanced.
Abstract:
A method of manufacturing spring pallets of a switchable roller finger follower. The method includes the steps of forming the spring pallets of the roller finger follower as a single unit, forming a material web between the spring pallets, and separating the spring pallets apart from each other. Also, an intermediate assembly of the spring pallets of the roller finger follower is disclosed. The intermediate assembly includes a first spring pallet, a second spring pallet, and a material web which extends between the spring pallets, and adjoins the spring pallets together. Further, a method of manufacturing an inner arm of the switchable roller finger follower is disclosed in which the inner arm is formed by sheet metal, preferably by stamping.
Abstract:
A device for varying the relative angle position of a camshaft with respect to a crankshaft of an internal combustion engine. A circlip fixes the valve housing in a positively locking manner. The circlip has at least one radially extending circumferential portion which is designed to engage into an annular groove arranged in the camshaft or in the rotor in the axial end region of said camshaft or rotor, wherein the circlip has at least one axially extending retaining portion, wherein the control piston has, in one of the face regions thereof, an annular groove which is designed for the engagement of the at least one axially extending retaining portion, and wherein the valve housing has, in one of its face regions, at least one hook-shaped portion for engaging behind at least one radially extending circumferential portion of the circlip.