Abstract:
A method and a system for measuring an optical asynchronous sample signal. The system for measuring an optical asynchronous sampling signal comprises a pulsed optical source capable of emitting two optical pulse sequences with different repetition frequencies, a signal optical path, a reference optical path, and a detection device. Since the optical asynchronous sampling signal can be measured by merely using one pulsed optical source, the complexity and cost of the system are reduced. A multi-frequency optical comb system using the pulsed optical source and a method for implementing the multi-frequency optical comb are further disclosed.
Abstract:
A broadband light source includes one or more laser diodes that are capable of generating a pump signal having a wavelength shorter than 2.5 microns, a pulse width of at least 100 picoseconds and a pump optical spectral width. The light source also includes one or more optical amplifiers that are coupled to the pump signal and are capable of amplifying the pump signal to a peak power of at least 500 W. The light source further includes a first fiber that is coupled to the one or more optical amplifiers. The first fiber including an anomalous group-velocity dispersion regime and a modulational instability mechanism that operates to modulate the pump signal. The light source also includes a nonlinear element that is coupled to the first fiber that is capable of broadening the pump optical spectral width to at least 100 nm through a nonlinear effect in the nonlinear element.
Abstract:
The invention provides for a device comprising an apparatus comprising (a) a transmission grating capable of diffracting a photon beam into a diffracted photon output, and (b) an image detector capable of detecting the diffracted photon output. The device is useful for measuring the spatial profile and diffraction pattern of a photon beam, such as a vacuum ultraviolet (VUV) beam.
Abstract:
Provided is an optical sensor interrogation system. The optical sensor interrogation system includes: a light source unit which matches round-trip time of light and wavelength tunable cycle time of light in a resonator and emits light; a sensing unit which receives an optical signal in which a center wavelength periodically tunes, from the light source unit and tunes the center wavelength of the optical signal according to physical changes applied from the outside; and a signal processing unit which receives the optical signal reflected from the sensing unit, detects data, and images the data. In particular, the light source unit includes a delaying unit which delays the round-trip time of light and a tunable filter which tunes the wavelength of light so as to match the round-trip time of light with the wavelength tunable cycle time of light. Accordingly, a Fourier domain mode locking (FDML) wavelength swept laser, which operates at speed of several tens kHz or above, is used as a light source so that strain of a fluid, which changes in a short time interval of 0.1 msec or below, is precisely measured and thus a real-time analysis may be performed at high speed.
Abstract:
A terahertz spectrometer includes an optical fiber and an emitter. The optical fiber is branched from a gain fiber constituting an ultra-short pulse oscillator. The emitter generates a terahertz wave from a pulse beam guided from the gain fiber through the optical fiber.
Abstract:
A sensor device that uses a number of bragg grating (FBG) sensors and novel interrogation system with a ring cavity configuration for simultaneous time-division-multiplexex (TDM) and wavelength-division-multiplexed (WDM) interrogation of FBG sensors. The ring cavity includes an amplifier, and output coupler and an optical circulator. The coupler is connected to a wavelength measuring system and the optical circulator is connected to the FBG sensors. The FBG sensors can be in a number of groups. TDM interrogation is applied to each group of FBG sensors while WDM interrogation is applied to each FBG sensors within each group.
Abstract:
A white light spectroscopy system includes a super continuum light source having an input light source including semiconductor diodes to generate an input beam having a wavelength shorter than 2.5 microns. The light source includes a cladding-pumped fiber optical amplifier to receive the input beam, and a photonic crystal fiber to receive the amplified optical beam to broaden the spectral width to 100 nm or more forming an output beam in the visible wavelength range. The output beam is pulsed with a repetition rate of 1 Megahertz or higher. The system also includes a lens and/or mirror to receive the output beam, to send the output beam to a scanning stage, and to deliver the received output beam to a sample. A detection system includes dispersive optics and narrow band filters followed by one or more detectors to permit approximately simultaneous measurement of at least two wavelengths from the sample.
Abstract:
The present invention generally relates to methods and systems for narrowing a wavelength emission of light. In certain aspects, methods of the invention involve transmitting light through a filter and passing a portion of the filtered light through a gain chip assembly at least two times before that portion of light passes again through the filter.
Abstract:
A method and a system for measuring an optical asynchronous sample signal. The system for measuring an optical asynchronous sampling signal comprises a pulsed optical source capable of emitting two optical pulse sequences with different repetition frequencies, a signal optical path, a reference optical path, and a detection device. Since the optical asynchronous sampling signal can be measured by merely using one pulsed optical source, the complexity and cost of the system are reduced. A multi-frequency optical comb system using the pulsed optical source and a method for implementing the multi-frequency optical comb are further disclosed.
Abstract:
A method and a system for measuring an optical asynchronous sample signal. The system for measuring an optical asynchronous sampling signal comprises a pulsed optical source capable of emitting two optical pulse sequences with different repetition frequencies, a signal optical path, a reference optical path, and a detection device. Since the optical asynchronous sampling signal can be measured by merely using one pulsed optical source, the complexity and cost of the system are reduced. A multi-frequency optical comb system using the pulsed optical source and a method for implementing the multi-frequency optical comb are further disclosed.