Abstract:
Systems and methods for generating, projecting or correlating thermal spectra use digital micro-mirror devices (DMDs) to controllably modulate input radiation such as long wave infrared light. An optical system for creating an output spectrum based upon an input light suitably includes a grating configured receive the input light and to spread the input light by wavelength into an input spectrum. A digital micro-mirror device (DMD) is configured to receive the input spectrum and to controllably activate mirrors in the DMD corresponding to selected wavelengths of the input light. Portions of the input light having selected wavelengths can be extracted from remaining portions of the input light for the output spectrum. By selecting and activating only certain mirrors on the DMD, particular wavelengths of light in infrared or other spectra can be optically switched for any number of subsequent applications, including spectral projection, simulation of solar or other spectra, detection of chemical substances, or the like.
Abstract:
An electromagnetic radiation detection device is described which includes a tunable dispersive optical element configured to receive electromagnetic radiation and to change the dispersion of the received electromagnetic radiation; a sensor configured to detect the dispersed electromagnetic radiation changed by the dispersive optical element; and a controller configured to: (i) selectively tune the dispersive optical element so as to adjust the dispersion of the received electromagnetic radiation; and (ii) change one or more of operating parameters of the sensor in accordance with the adjusted dispersion. In some implementations, the radiation detection device may be configured as a spectrometer to measure one or more properties of electromagnetic radiation. A method for detecting electromagnetic radiation is also disclosed.
Abstract:
A device and a method for implementing a photo-spectrometer unit (20), or PSU (20), for use with a spectrometry system (100) having optical means (12), and electronic means (13) is disclosed. The PSU is formed in a two-step manufacturing process to form a chip having a monolithic structure. The chip has a first surface and second surface. During the first manufacturing process step, optical means are integrally formed on the first surface (301), and during the second manufacturing process step, electronic means are formed on the second surface (302). The chip is transparent to electromagnetic radiations, and the PSU has at least one optical deflecting element (32) for guiding received radiations through the chip, for establishing direct optical path coupling between an optical element formed on the first surface and an electronic element formed on the second surface.
Abstract:
The invention relates to a method for manufacturing a spectral detector including a photo detector array and cholesteric liquid crystal material for measuring properties of light over portions of the electromagnetic spectrum. By exposing the cholesteric liquid crystal material for different exposure intensities or exposure times of ultraviolet radiation at different positions on the cholesteric liquid crystal material in a controlled way, portions of the cholesteric liquid crystal material are obtained, each having, in general, its own optical transmission. This invention also relates to a spectral detector manufactured by the inventive method.
Abstract:
A tunable light source for interrogating at least one resonant waveguide grating (RWG) biosensor having a resonance linewidth. The tunable light source includes a broadband light source that emits a light beam having a first spectral bandwidth greater than the RWG biosensor resonance linewidth. The broadband light source may be substantially spatially incoherent. A tunable optical filter having a tunable spectral linewidth is arranged to receive and filter the light beam to cause the light beam to have a second spectral bandwidth substantially the same as the RWG biosensor resonance linewidth. Label-independent optical readers that employ the tunable light source are also disclosed.
Abstract:
An apparatus and source arrangement for filtering an electromagnetic radiation can be provided which may include at least one spectral separating arrangement configured to physically separate one or more components of the electromagnetic radiation based on a frequency of the electromagnetic radiation. The apparatus and source arrangement may also have at least one continuously rotating optical arrangement which is configured to receive at least one signal that is associated with the one or more components. Further, the apparatus and source arrangement can include at least one beam selecting arrangement configured to receive the signal.
Abstract:
Computer program products comprising tangible computer-readable media having instructions that are executable by a computer to generate a customized spectral profile, which can be used to generate a corresponding filter. The instructions can comprise: generating a trial source spectrum; determining an uncorrected lamp source spectrum; calculating one or more optical indices using the trial source spectrum or the uncorrected lamp source spectrum; and optimizing one or more of the optical indices by varying the trial source spectrum to generate the customized spectral profile.
Abstract:
The present invention provides an apparatus for photodynamic therapy and fluorescence detection, in which a combined light source is provided to illuminate an object body and a multispectral fluorescence-reflectance image is provided to reproduce various and complex spectral images for an object tissue, thus performing effective photodynamic therapy for various diseases both outside and inside of the body.For this purpose, the present invention provides an apparatus for photodynamic therapy and photodetection, which provides illumination with light of various wavelengths and multispectral images, the apparatus including: an optical imaging system producing an image of an object tissue and transmitting the image to a naked eye or an imaging device; a combined light source including a plurality of coherent and non-coherent light sources and a light guide guiding incident light emitted from the light sources; a multispectral imaging system including at least one image sensor; and a computer system outputting an image of the object tissue to the outside. Thus, the apparatus for photodynamic therapy and photodetection of the present invention can effectively perform the photodynamic therapy and photodetection by means of the combined light source capable of irradiating light having various spectral components to an object tissue and the multispectral imaging system capable of obtaining images from several spectral portions for these various spectral ranges at the same time, thus improving the accuracy of diagnosis and efficiency of the photodynamic therapy.
Abstract:
According to the invention, a method for compensating for temperature related measurement errors in an optical arrangement, comprising at least one lens (2) is designed with a view to an economical and reliable as possible compensation for temperature related measurement errors without significant increased production expense, wherein a multicoloured beam (5) is passed through the optical arrangement (1, 1′), which is focussed at points at varying distances from the lens (2) as a result of the chromatic aberration of the lens (2), at least a part of the spectrum of the light beam (5) being at least partly reflected within the optical arrangement (1, 1′) and directed to a detector device (12) by means of which a determination of a spectrum is carried out, the temperature of the arrangement (1, 1′) is determined from the spectrum recorded by the detection device (12) and a compensation for temperature related measurement errors is carried out based on the temperature determined thus. A corresponding optical arrangement in disclosed.
Abstract:
A spectrometer includes a structural member made of a light-weight material having a small coefficient of thermal expansion (CTE). The spectrometer is dimensionally stable over a range of expected ambient temperatures, without controlling the temperature of the spectrometer.