Abstract:
An electrostatic multipole device for influencing a charged particle beam propagating along an optical axis is described. The multipole device includes a first electrical contact, a second electrical contact, and a high-resistance layer which extends at least partially around the optical axis and is configured to allow a current flow between the first electrical contact and the second electrical contact, wherein the first electrical contact contacts the high-resistance layer at a first circumferential position and is configured to provide a first potential to the first circumferential position, and wherein the second electrical contact contacts the high-resistance layer at a second circumferential position at an angular distance from the first circumferential position and is configured to provide a second potential to the second circumferential position. Further, an electrostatic multipole arrangement including two or more such multipole devices and a charged particle beam device are described.
Abstract:
A multipole device for influencing a charged particle beam propagating along an optical axis is described. The multipole device includes: an electrostatic deflector with at least two deflector electrodes for deflecting the charged particle beam by a deflection angle, wherein the deflector electrodes extend over a first length along the optical axis; and an electrostatic corrector comprising at least four corrector electrodes to compensate for an aberration of the charged particle beam, wherein the corrector electrodes extend over a second length along the optical axis, which is shorter than the first length. A distance between a projection of the deflector electrodes on the optical axis and a projection of the corrector electrodes on the optical axis may be smaller than the first length so that, during operation of the multipole device, first fringe fields generated by the deflector electrodes and second fringe fields generated by the corrector electrodes may spatially overlap, wherein the electrostatic corrector may be configured to compensate for an aberration of the charged particle beam caused by the electrostatic deflector.
Abstract:
A charged particle multi-beam lithography system includes an illumination sub-system that is configured to generate a charged particle beam; and multiple plates with a first aperture through the plates. The plates and the first aperture are configured to form a charged particle doublet. The system further includes a blanker having a second aperture whose footprint is smaller than that of the first aperture. The charged particle doublet is configured to demagnify a portion of the charged particle beam passing through the first aperture, thereby producing a demagnified beamlet. The blanker is configured to receive the demagnified beamlet from the charged particle doublet, and is further configured to conditionally allow the demagnified beamlet to travel along a desired path.
Abstract:
A multi-beam apparatus for observing a sample with oblique illumination is proposed. In the apparatus, a new source-conversion unit changes a single electron source into a slant virtual multi-source array, a primary projection imaging system projects the array to form plural probe spots on the sample with oblique illumination, and a condenser lens adjusts the currents of the plural probe spots. In the source-conversion unit, the image-forming means not only forms the slant virtual multi-source array, but also compensates the off-axis aberrations of the plurality of probe spots. The apparatus can provide dark-field images and/or bright-field images of the sample.
Abstract:
The present invention concerns a charged-particle multi-beamlet system that comprises a source of charged particles (301); a first multi-aperture plate (320) having plural apertures disposed in a charged particle beam path of the system downstream of the source; a first multi-aperture selector plate (313) having plural apertures; a carrier (340), wherein the first multi-aperture selector plate is mounted on the carrier; and an actuator (350) configured to move the carrier such that the first multi-aperture selector plate is disposed in the charged particle beam path of the system downstream of the source in a first mode of operation of the system, and such that the first multi-aperture selector plate is disposed outside of the charged particle beam path in a second mode of operation of the system. The source, the first multi-aperture plate and the carrier of the system are arranged such that a first number of charged particle beamlets is generated at a position downstream of both the first multi-aperture plate and the first multi-aperture selector plate in the first mode of operation, and that a second number of charged particle beamlets is generated at the position in the second mode of operation, wherein the first number of beamlets differs from the second number of beamlets.
Abstract:
One embodiment relates to a pillar-supported array of micro electron lenses. The micro-lens array includes a base layer on a substrate, the base layer including an array of base electrode pads and an insulating border surrounding the base electrode pads so as to electrically isolate the base electrode pads from each other. The micro-lens array further includes an array of lens holes aligned with the array of base electrode pads and one or more stacked electrode layers having openings aligned with the array of lens holes. The micro-lens array further includes one or more layers of insulating pillars, each layer of insulating pillars supporting a stacked electrode layer. Another embodiment relates to a method of fabricating a pillar-supported array of micro electron lenses. Other embodiments, aspects and features are also disclosed.
Abstract:
Disclosed herein is a microcolumn with a double aligner. The microcolumn is configured such that when an axis of an aperture of a limiting aperture is spaced apart from an original path of a particle beam, the path of the particle beam can be effectively compensated for in such a way that the path of the particle beam is aligned with the axis of the aperture of the limiting aperture by the double aligner. The microcolumn includes a source lens. The source lens includes at least two aligner layers which compensate for the path of the particle beam.
Abstract:
The present invention provides apparatus for an imaging system comprising a multitude of imaging elements upon a substrate. In some embodiments the substrate may be approximately round with a radius of approximately one inch. Various methods relating to using and producing an imaging system are discussed.
Abstract:
To provide an electrostatic lens which improves an irradiation accuracy of an electron beam while satisfying the need for higher throughput. An electrostatic lens according to one embodiment of the present invention includes a substrate which includes an insulating plate in which a plurality of first through holes that allow an electron beam to pass through are formed, a plurality of electrodes that are formed on an inner wall of the plurality of first through holes, and a plurality of wirings that are formed on the insulating plate and are electrically connected to each of the electrodes, wherein the plurality of electrodes are electrically independent from each other.
Abstract:
A scanning charged particle beam device configured to image a specimen is described. The scanning charged particle beam device includes a source of charged particles, a condenser lens for influencing the charged particles, an aperture plate having at least two aperture openings to generate at least two primary beamlets of charged particles, at least two deflectors, wherein the at least two deflectors are multi-pole deflectors, a multi-pole deflector with an order of poles of 8 or higher, an objective lens, wherein the objective lens is a retarding field compound lens, a beam separator configured to separate the at least two primary beamlets from at least two signal beamlets, a beam bender, or a deflector or a mirror configured to deflect the at least two signal beamlets, wherein the beam bender is a hemispherical beam bender or beam bender having at least two curved electrodes, and at least two detector elements.