Abstract:
A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires that may be embedded in a matrix. The conductive layer is optically clear, patternable and is suitable as a transparent electrode in visual display devices such as touch screens, liquid crystal displays, plasma display panels and the like.
Abstract:
An electronic device includes an electronic part including at least one first electrode, a substrate including at least one second electrode, and at least one bump formed on the at least one first electrode and formed from an elastic conductive resin including a resin having rubbery elasticity, and an acicular conductive filler including a surface layer coated with one of gold, silver, nickel, and copper. The at least one first electrode and the at least one second electrode are electrically connected to each other by mechanically contacting the at least one bump with the at least one second electrode.
Abstract:
A high thermal conductivity resin that is made up of a host resin matrix (42) and high thermal conductivity fillers (30) that are mixed within the host resin to form a resin mixture. The fillers comprise at least 3-5% by weight of the resin mixture, and the fillers are from an average of 1-100 nm in at least one dimension, and where the particles are smaller than an average of 1000 nm in the particles' longest dimension. The host resin matrix forms an ordered resin shell (40) around the high thermal conductivity fillers (30), whereby resin molecules are aligned perpendicular to the surface of the high thermal conductivity fillers. An overlap of the ordered resin shells (44) is formed between the high thermal conductivity fillers such that continuous pathways for ordered resin shells are created through the resin mixture.
Abstract:
A high thermal conductivity resin that is made up of a host resin matrix (42) and high thermal conductivity fillers (30) that are mixed within the host resin to form a resin mixture. The fillers comprise at least 3-5% by weight of the resin mixture, and the fillers are from an average of 1-100 nm in at least one dimension, and where the particles are smaller than an average of 1000 nm in the particles' longest dimension. The host resin matrix forms an ordered resin shell (40) around the high thermal conductivity fillers (30), whereby resin molecules are aligned perpendicular to the surface of the high thermal conductivity fillers. An overlap of the ordered resin shells (44) is formed between the high thermal conductivity fillers such that continuous pathways for ordered resin shells are created through the resin mixture.
Abstract:
Disclosed is a laminated (or non-laminated) conductive interconnection for joining an integrated circuit device to a device carrier, where the conductive interconnection comprises alternating metal layers and polymer layers. In addition, the polymer can include dendrites, metal projections from the carrier or device, and/or micelle brushes on the outer portion of the polymer. The polymer layers include metal particles and the alternating metal layers and polymer layers form either a cube-shaped structure or a cylinder-shaped structure.
Abstract:
A substrate according to the present invention includes a metal plate, and an insulating film, which is provided on the surface of the metal plate and which includes needle alumina particles and granular particles. The substrate of the present invention has excellent insulating property and can be manufactured on an industrial basis with acceptable efficiency.
Abstract:
Compositions and methods for production of conductive paths can include a printable composition including a liquid carrier and a plurality of nanostructures. The plurality of nanostructures can have an aspect ratio of at least about 5:1 within the liquid carrier. Examples of nanostructures include nanobelts, nanoplates, nanodiscs, nanowires, nanorods, and mixtures of these materials. These printable compositions can be used to form a conductive path on a substrate. The printable composition can be applied to a substrate using any number of conventional printing techniques. Following application of the printable composition, at least a portion of the liquid carrier can be removed such that the nanostructures can be in sufficient contact to provide a conductive path. The nanostructures arranged in a conductive path can be sintered or used as a conductive material without sintering.
Abstract:
A soldered assembly for a microelectronic element includes a microelectronic element, solder columns extending from a surface of the microelectronic element and terminals connected to distal ends of the columns. The assembly can be handled and mounted using conventional surface-mount techniques, but provides thermal fatigue resistance. The solder columns may be inclined relative to the chip surface, and may contain long, columnar inclusions preferentially oriented along the lengthwise axes of the columns.
Abstract:
An electronic assembly comprising a first electronic element, a second electronic element, and a durably flexible bond therebetween. The bond comprises an anisotropic conductive adhesive that includes elongated electrically conductive particles. The bond provides at least one electrical pathway between the first electronic element and the second electronic element through an elongated contact region. This bond is functionally maintained for at least about 200 flexes.
Abstract:
The present invention is a connection material which enables a flexible circuit board to be connected to a bare IC chip without causing a shoulder touch effect. The connection material contains an insulating adhesive and a flaky or fibrous insulating filler dispersed therein is used for connecting a film-like flexible circuit board and a bare IC chip. The aspect ratio of the flaky or fibrous insulating filler is no less than 20.