Abstract:
A printed circuit board according to an embodiment of the present invention includes an insulating layer, a pad formed on the insulating layer and exposed through an opening section of a solder resist, a bump formed by filling an opening portion of the solder resist from top of the pad and having an narrow width than the opening of the solder resist.
Abstract:
A method of electrical connection between a series of hard conductive points and corresponding pads arranged on a one face of a first component, and a series of buried ductile conductive bumps and corresponding pads arranged on one face of a second component. The method comprises forming said series of hard conductive points on said face of the first component; forming said series of buried ductile conducting bumps on said face of the second component; inserting said series of hard conductive points in said series of buried ductile conducting bumps at an ambient temperature; and directly sealing the first and second components together.
Abstract:
An interconnection element is provided for conductive interconnection with another element having at least one of microelectronic devices or wiring thereon. The interconnection element includes a dielectric element having a major surface. A plated metal layer including a plurality of exposed metal posts can project outwardly beyond the major surface of the dielectric element. Some of the metal posts can be electrically insulated from each other by the dielectric element. The interconnection element typically includes a plurality of terminals in conductive communication with the metal posts. The terminals can be connected through the dielectric element to the metal posts. The posts may be defined by plating a metal onto exposed co-planar surfaces of a mandrel and interior surfaces of openings in a mandrel, after which the mandrel can be removed.
Abstract:
A fabricated substrate has at least one plurality of posts. The plurality is fabricated such that the two posts are located at a predetermined distance from one another. The substrate is exposed to a fluid matrix containing functionalized carbon nanotubes. The functionalized carbon nanotubes preferentially adhere to the plurality of posts rather than the remainder of the substrate. A connection between posts of the at least one plurality of posts is induced by adhering one end of the functionalized nanotube to one post and a second end of the functionalized carbon nanotube to a second post.
Abstract:
A method of manufacturing a coreless substrate having filled via pads, including: forming a first insulating layer on one side of a carrier forming a build-up layer including a build-up insulating layer and a build-up circuit layer having a build-up via on the first insulating layer, and forming a second insulating layer on the build-up layer; removing the carrier, and forming via-holes in the first and second insulating layers; and conducting a filled plating process in the via-holes of the first and second insulating layers thus forming first and second filled via pads therein.
Abstract:
A method of establishing conductive connections is disclosed. The method includes providing an integrated circuit die having a plurality of solder balls each of which has an oxide layer on an outer surface of the solder ball. The method also includes performing a heating process to heat at least the solder balls and applying a force causing each of a plurality of piercing bond structures on a substrate to pierce one of the solder balls and its associated oxide layer to thereby establish a conductive connection between the solder ball and the piercing bond structure.
Abstract:
An electronic device may include a substrate, a seed layer on the substrate, a barrier layer on the seed layer opposite the substrate, and an oxidation barrier on the barrier layer opposite the seed layer. The barrier layer and the seed layer comprise different materials, and the oxidation barrier and the barrier layer may comprise different materials. The seed layer may be undercut relative to the barrier layer and/or relative to the oxidation barrier so that the barrier layer and/or the oxidation barrier define a lip extending beyond the seed layer in a direction parallel with respect to a surface of the substrate. Related methods are also discussed.
Abstract:
A method of producing a land grid array (LGA) interposer structure, including an electrically insulating carrier plane, and at least one interposer mounted on a first surface of said carrier plane. The interposer possesses a hemi-toroidal configuration in transverse cross-section and is constituted of a dielectric elastomeric material. A plurality of electrically-conductive elements are arranged about the surface of the at least one hemi-toroidal interposer and extend radically inwardly and downwardly from an uppermost end thereof into electrical contact with at least one component located on an opposite side of the electrically insulating carrier plane.
Abstract:
A method of manufacturing a printed circuit board having a metal bump, including: forming a recess for creation of the metal bump on a first carrier, forming a first barrier layer on the first carrier, and forming an upper circuit layer on the first barrier layer, the upper circuit layer including a metal bump charged in the recess and a circuit pattern; forming a second barrier layer on a second carrier, and forming a lower circuit layer on the second barrier layer; preparing an insulating layer, and transferring the upper and lower circuit layers to the insulating layer; removing the first and second carriers; and removing the first and second barrier layers.
Abstract:
A semiconductor device is of a PoP structure such that first electrode portions provided on a first device mounting board constituting a first semiconductor module and second electrode portions provided in a second semiconductor module are joined together by solder balls. A first insulating layer having an opening is provided on one main surface of an insulating resin layer which is a substrate, and an electrode portion, whose top portion protrudes above the top surface of the first insulating layer, is formed in the opening. A second insulating layer is provided on top of the first insulating layer in the periphery of the top portion of the first electrode portion; the second insulting layer is located slightly apart from the top portion of the first electrode portion. The first electrode portion is shaped such that the top portion is formed by a curved surface or formed by a curved surface and a plane surface smoothly connected to the curved surface.