Abstract:
An assembly including a printed-circuit electronics card mounted on a metal substrate, and in electronic communication with the same, includes a capsule which is crimped into a cavity in the metal substrate and which extends through a hole in the electronics card, the edges of said hole being metallised, the capsule being soldered to the metallised area of the edges.
Abstract:
Microelectronic contacts, such as flexible, tab-like, cantilever contacts, are provided with asperities disposed in a regular pattern. Each asperity has a sharp feature at its tip remote from the surface of the contact. As mating microelectronic elements are engaged with the contacts, a wiping action causes the sharp features of the asperities to scrape the mating element, so as to provide effective electrical interconnection and, optionally, effective metallurgical bonding between the contact and the mating element upon activation of a bonding material.
Abstract:
A method of mounting an electronic power component to a cooling element includes finishing at least a bonding area of the cooling element with a finish for use during soldering, forming an indentation in the bonding area of the cooling element, placing adhesive in the indentation, attaching the power component to the cooling element using the adhesive, and thereafter soldering the power component to the cooling element. The finishing melts during soldering and the adhesive prevents shifting of the power component on the cooling element during soldering. Alternatively, the power component is attached to a printed circuit board by adhesive bonding prior to soldering.
Abstract:
A device with an electric circuit configuration includes electrical components and a pressed grid stamped from a metal strip for electrically conductively connecting the electrical components to one another. The pressed grid has bent-over large-area peripheral regions and a plug part with connection pins stamped out of the metal strip.
Abstract:
A connector for microelectronic includes a sheet-like body having a plurality of holes, desirably arranged in a regular grid pattern. Each hole is provided with a resilient laminar contact such as a ring of a sheet metal having a plurality of projections extending inwardly over the hole of a first major surface of the body. Terminals on a second surface of the connector body are electrically connected to the contacts. The connector can be attached to a substrate such a multi-layer circuit panel so that the terminals on the connector are electrically connected to the leads within the substrate. Microelectronic elements having bump leads thereon may be engaged with the connector and hence connected to the substrate, by advancing the bump leads into the holes of the connector to engage the bump leads with the contacts. The assembly can be tested, and if found acceptable, the bump leads can be permanently bonded to the contacts.
Abstract:
A heat dissipating apparatus for a semiconductor device for use in a motor drive that improves heat dissipation efficiency by transferring heat from the semiconductor device directly to a heat sink, using ground leads or nonconnection leads of element lead pins. In addition, it is possible to connect the semiconductor device to the heat sink without extra fixing members
Abstract:
An interposer for interconnection between microelectronic circuit panels has contacts at its surfaces. Each contact has a central axis normal to the surface and a peripheral portion adapted to expand radially outwardly from the central axis responsive to a force applied by a pad on the engaged circuit panel. Thus, when the circuit panels are compressed with the interposers, the contacts expand radially and wipe across the pads. The wiping action facilitates bonding of the contacts to the pads, as by conductive bonding material carried on the contacts themselves.
Abstract:
A two-sided printed circuit board including a base having a first surface, a second surface substantially parallel to the first surface, and a plurality of through-holes formed in the base; a first conductive layer provided on the first surface of the base; a second conductive layer provided on the second surface of the base; and a conductive particle buried in each of the through-holes in a pressurized state for electrically connecting the first conductive layer and the second conductive layer.
Abstract:
A supported conductive network (SCN), which can be flexible or rigid, can have self-aligning conductors which connect with corresponding conductors of other networks. The conductive network can be fabricated into densely packed contact clusters for use as electrical interconnectors or circuits. The methods and apparatus for making the conductive network involve forming a sheet of conductive material into ridges and troughs one of which defines the conductive network and the other of which is waste material and then mechanically removing the waste material. The conductive network thus formed is supported by a dielectric layer.