Abstract:
A method for manufacturing a substrate with a metal film includes preparing an insulative substrate having the first surface and the second surface on the opposite side of the first surface, forming in the insulative substrate a penetrating hole having the inner wall tapering from the first surface of the insulative substrate toward the second surface, forming a layer of a composition containing a polymerization initiator and a polymerizable compound on the inner wall of the penetrating hole, irradiating the layer of the composition with energy such that a polymer is formed on the inner wall of the penetrating hole, applying a plating catalyst on the polymer, and forming a plated-metal film on the inner wall of the penetrating hole.
Abstract:
A wiring structure includes a board assembly and pin terminals. In each of pin terminal insertion holes formed in the board assembly, a terminal connection portion electrically connected to a metal foil wire and fitted onto the pin terminal so as to hold the pin terminal is provided in a through-hole of at least one of a plurality of circuit boards forming the board assembly, which forms a part of the pin terminal insertion hole, whereas an insulating sleeve blocking contact between the pin terminal and each of the remaining circuit boards is fitted into through-holes of the remaining circuit boards, which form the remaining part of the pin terminal insertion hole.
Abstract:
In a manufacturing method of a semiconductor device incorporating a semiconductor element in a multilayered wiring structure including a plurality of wiring layers and insulating layers, a semiconductor element is mounted on a silicon support body whose thickness is reduced to a desired thickness and which are equipped with a plurality of through-vias running through in the thickness direction; an insulating layer is formed to embed the semiconductor element; then, a plurality of wiring layers is formed on the opposite surfaces of the silicon support body in connection with the semiconductor element. Thus, it is possible to reduce warping which occurs in proximity to the semiconductor element in manufacturing, thus improving a warping profile in the entirety of a semiconductor device. Additionally, it is possible to prevent semiconductor elements from becoming useless, improve a yield rate, and produce a thin-type semiconductor device with high-density packaging property.
Abstract:
A through hole is formed in a circuit board that has fibers dispersed in a polymer matrix. Copper is sputtered within the through hole to form a sufficiently conductive layer for electrolytic plating over the sputtered copper layer.
Abstract:
A drop generator having a via structure configured for electrical and fluidic interconnection. The via structure includes an electrically conductive layer and an electrically insulating layer disposed on the electrically conductive layer.
Abstract:
A method of manufacturing a piezoelectric vibrator according to the invention includes the steps of: inserting a core portion of a conductive rivet member, which includes a planar base portion and the core portion extending in a direction vertical to the surface of a base portion, into a penetration hole of the base substrate and bringing the base portion of the rivet member into contact with a first surface of the base substrate; applying a paste-like glass frit on a second surface of the base substrate and moving a first squeegee which comes into contact with the second surface with an attack angle in one direction to thereby fill the glass frit in the penetration hole; and moving a second squeegee which comes into contact with the second surface with an attack angle in a direction opposite to the one direction to thereby fill the glass frit applied redundantly on the second surface in the penetration hole.
Abstract:
An inductor embedded in a printed wiring board includes a conductor extending in the thickness direction of a printed circuit board and a magnetic body that is in contact with the conductor with no gap therebetween. For example, the magnetic body is composed of ferrite having a cylindrical tubular shape. The conductor is composed of a copper film formed by plating on an inner peripheral surface of the cylindrical tubular ferrite. The inductor is inserted in the thickness direction of the printed wiring board.
Abstract:
A method for manufacturing a substrate with a metal film includes preparing an insulative substrate having the first surface and the second surface on the opposite side of the first surface, forming in the insulative substrate a penetrating hole having the inner wall tapering from the first surface of the insulative substrate toward the second surface, forming a layer of a composition containing a polymerization initiator and a polymerizable compound on the inner wall of the penetrating hole, irradiating the layer of the composition with energy such that a polymer is formed on the inner wall of the penetrating hole, applying a plating catalyst on the polymer, and forming a plated-metal film on the inner wall of the penetrating hole.
Abstract:
An inductor embedded in a printed wiring board includes a conductor extending in the thickness direction of a printed circuit board and a magnetic body that is in contact with the conductor with no gap therebetween. For example, the magnetic body is composed of ferrite having a cylindrical tubular shape. The conductor is composed of a copper film formed by plating on an inner peripheral surface of the cylindrical tubular ferrite. The inductor is inserted in the thickness direction of the printed wiring board.
Abstract:
An inductor embedded in a printed wiring board includes a conductor extending in the thickness direction of a printed circuit board and a magnetic body that is in contact with the conductor with no gap therebetween. For example, the magnetic body is composed of ferrite having a cylindrical tubular shape. The conductor is composed of a copper film formed by plating on an inner peripheral surface of the cylindrical tubular ferrite. The inductor is inserted in the thickness direction of the printed wiring board.