Abstract:
Methods and systems for removably mounting a Solid State Drive (SSD) to a Printed Circuit Board (PCB) device without use of a tool. An exemplary system comprises a top portion and at least two flexible legs. Each leg comprises a vertical member attached to the top portion, and a tab for insertion into the PCB, the tab restricting the motion of the drive enclosure with respect to the PCB when inserted into the PCB, thereby allowing for removable attachment of the enclosure to the PCB without use of a tool. The drive enclosure itself is adapted to receive the SSD and adapted to align the SSD for physical coupling with a connector for the PCB.
Abstract:
A battery holder for attachment to a printed circuit board includes a base, a positive conductor, a negative conductor and a top. The base is to be fixed to the printed circuit board and the two conductors are fixed to the base. The top includes a window for viewing the polarity of the battery and is selectively attached to the base by a series of latches.
Abstract:
A composite structure includes an electronic component and a supporting member. The electronic component includes a main body and a plurality of pins extended outwardly from the main body. The supporting member includes a first supporting part and a second supporting part. The first supporting part is foldable with respect to the second supporting part. The main body of the electronic component is accommodated within the first supporting part of the supporting member. The pins are accommodated with the second supporting part of the supporting member. The first supporting part is folded with respect to the second supporting part such that the pins are bent to define a bent structure.
Abstract:
A composite structure includes an electronic component and a supporting member. The electronic component includes a main body and a plurality of pins extended outwardly from the main body. The supporting member includes a first supporting part and a second supporting part. The first supporting part is foldable with respect to the second supporting part. The main body of the electronic component is accommodated within the first supporting part of the supporting member. The pins are accommodated with the second supporting part of the supporting member. The first supporting part is folded with respect to the second supporting part such that the pins are bent to define a bent structure.
Abstract:
There is provided an image pickup module which can be formed by a simple process while securing the mechanical strength of an inner lead at the time of bending and when fixed, without increasing an outer dimension of the image pickup module.The image pickup module includes an image pickup element having an image pickup surface, and a flexible substrate is drawn to be directed rearward of the image pickup surface. A guide member which fixes the image pickup element and the flexible substrate is provided, and the guide member includes a portion which is extended along a rear surface of the image pickup element, and a portion which is extended along a gap between the image pickup element and the flexible substrate.
Abstract:
A filter mainly includes a coil connecting frame, a plurality of coils received in the frame, and a first circuit board. The frame comprises a first surface with a plurality of first pins and a second surface, opposite to the first surface, with a plurality of second pins. The first pins are connected to the first circuit board, and the second pins are connected to an external electronic device while both the first and second pins are connected to the coils. The coil connecting frame further includes an electrical connecting portion between the first surface and the second surface with a plurality of conducting pins which penetrate through the first and second surfaces to connect to the circuit board and the second pins or external electronic device.
Abstract:
A light source device includes a light source, a holder, and a lead board. The holder has a first face to hold the light source. The lead board has a first electrode connected to the light source through a solder, a second electrode to be connected to a circuit board, a first connector connected to the second electrode, and a second connector to connect the first electrode and the first connector. The first electrode and the first connector are exposed from the first face of the holder. The second connector is unable to be exposed from the first face of the holder.
Abstract:
The disclosure describes a printed circuit board (PCB) for use in an electronic device. The PCB comprises: a top side; a bottom side; an edge between the top side and the bottom side; a cavity from the top side to the bottom side; a region on the top side for mounting an electronic device; and a connector for receiving connections from the electronic device. In the PCB, the connector is located on either the bottom side or the edge of the side of the PCB. The electronic device can be a display module.
Abstract:
An optical communication device, including a module board which includes at least the optical module inputting or outputting an optical signal, and the peripheral circuit connecting electrically with the optical module; a connector board which includes an electric connector inputting or outputting an electric signal: and a flexible board which adjusts a relative position of the module board and the connector board, and transmits the electric signal among these boards.
Abstract:
A light source device is disclosed, which involves forming a plurality of carrier planes on a substrate with at least one of the carrier planes forming an angle relative to the substrate, and respectively mounting LEDs on the carrier planes and electrically connecting the LEDs with the carrier planes so as to obtain a preferred light distribution effect, thereby eliminating the need of additional light control element in the prior art and enhancing light emitting efficiency of the light source device.