Abstract:
A variable valve actuation system for providing discrete exhaust and intake valve lift profiles for various operating modes of an internal combustion engine. The variable valve actuation system includes exhaust and intake rocker assemblies, exhaust and intake hydraulic extension devices operatively coupling corresponding rocker assemblies with respective engine valves and exhaust and intake control valves for selectively supplying the pressurized hydraulic fluid to the extension devices so as to independently switch them between a pressurized condition and a depressurized condition. The engine further includes an exhaust brake provided to initiate a small lift of the exhaust valve during the engine braking operation while the exhaust extension device maintains the exhaust valve open during a compression stroke for bleeder-compression release braking. The exhaust and intake valves can be adjusted independently to provide combinations of valve lift modes.
Abstract:
A line of small internal combustion engines, including twin cylinder engines and single cylinder engines. The engines each include a crankcase, and one or more cylinder members attached to the crankcase, the cylinder members being separate components from the crankcase. A number of different crankcases are provided for various types of single and two cylinder engines, the crankcases having common mounting structure to which the cylinder members may be attached. Thus, the manner in which the cylinder members are attached to the crankcases is the same for each of the different types of crankcases. Two different types of cylinder members are provided, one having a side valve or “L-head” valve train, and the other having an overhead cam (“OHV”) valve train. The cylinder members are therefore modular components which may be selectively used in a variety of different types of engines.
Abstract:
A method of variably actuating a valve of an engine includes selecting one of three valve lift profiles dependent at least in part upon engine operating conditions and parameters. The selected valve lift profile is phased relative to the angular position of the engine crankshaft dependent at least in part upon engine operating conditions and parameters. The valve is actuated according to the selected and phased valve lift profile.
Abstract:
A method for generating an acceleration profile for a valve operating cam of an internal combustion engine varies an adjustment point of an initial draft acceleration profile curve such that a determinant of a set of equations defining valve motion constraints and scaling factors is forced to zero. The equations may then be solved for values of the scaling factors which are applied to the initial draft acceleration profile curve to generate a desired profile which satisfies valve motion constraints.
Abstract:
A small internal combustion engine having user interfaces which are located proximate to one another and within a centralized portion of the engine which is easily accessible by a user, such that the user may readily identify and manipulate the user interfaces. The user interfaces include the carburetor choke and throttle controls, the carburetor primer bulb, the engine ignition key switch, the fuel shut-off valve, the fuel fill inlet and fuel tank cap, and the oil fill inlet and oil fill cap. The carburetor choke and throttle controls are configured as rotary members mounted within an upper front portion of the engine shroud, and are shaped for easy grasping by a user to control the running of the engine.
Abstract:
An air cleaner for small internal combustion engines, including a removable or replaceable air cleaner element detachably mounted within an air cleaner cavity which is defined at least on part by the shroud of the engine. The air cleaner element includes engagement structure for releasable engagement with a wall of the air cleaner cavity to permit mounting of the sir cleaner element within the cavity, and removal of the air cleaner element from the cavity, without the use of tools. In addition, a cover is provided for releasably engaging the air cleaner cavity to cover the air cleaner element.
Abstract:
A three-dimensional cam of a three-dimensional map state, having uncountable cam profiles continuously ranged along a rotation axis direction, and a valve lifter following a cam surface of the three-dimensional cam are included, and a lift characteristic of a valve is continuously controlled by relative motions of the three-dimensional cam and the valve lifter. The three-dimensional cam has cam top portions formed to have a smoothly ranged edge line substantially along the rotation axis direction thereof, and a part of the edge line includes at least one valley portion to take on a row of peaks. The cam peak portion of the cam top portion which forms the valley portion of the edge line is moderately set to be deviated toward a delayed side with reference to the rotation direction of the cam from the other cam peak portions.
Abstract:
Method and arrangement for delivering EGR gas to combustion spaces in a multi-cylinder, four-stroke internal combustion engine. Each cylinder, with an associated piston, has at least one inlet valve and at least one exhaust valve (10) for controlling fluid interconnection between the combustion space in the cylinder and an intake system and an exhaust system, respectively. A rotatable camshaft (18) having a cam curve (23) is designed to interact with a cam follower (17) for operation of the exhaust valve (10) during a first opening and closing phase. The cam curve (23) is also designed to interact with a second cam follower (20) during a second opening and closing phase which is phase-offset in relation to the first aforementioned opening and closing phase. This configuration facilitates the cylinder being connected to the exhaust system during the induction stroke, once the exhaust stroke is completed.
Abstract:
Two embodiments of overhead camshaft internal combustion engines wherein the camshafts are provided with cutouts in the area adjacent the cam lobes so as to keep the center of gravity in the lobed area closer to the rotational axis of the camshaft and also to improve balance and reduce vibration.
Abstract:
In internal combustion engine (10) having a power shaft (12) mounted in an engine block (11) for rotation about a power shaft axis (X), a valve arrangement (20) for controlling intake to and exhaust from a combustion chamber (20), and a cam device (22) for actuating the valve arrangement (20); the cam device (22) includes a ring cam (24) having a generally ring-shaped body, with the body having an inner peripheral surface (35) and an outer peripheral surface (26). The ring cam (24) is mounted to the engine block (11) for rotation about a cam axis (Y) displaced from the power shaft axis (X). A cam surface (32) or (34) is provided on the outer peripheral surface (26) for actuating the valve arrangement (20) as the ring cam (24) is rotated about the cam axis (Y). A gear (38) is operably engaged with the power shaft (12) and nested inside the inner peripheral surface (35) for driving the ring cam (24). A gear (36) is provided on the inner peripheral surface (35) for being driven by the gear (38) to rotate the ring cam (24) about the cam axis (Y). A pair of cam followers (28) and (30) are received in an elongated aperture (66) having a non-circular cross-section formed in the engine (10), and are driving by the for sliding, linear motion relative to each other and the engine block (11) by the ring cam (24).