Abstract:
The invention provides a composition including DNA bonded to a plasma-treated surface, the plasma can be any suitable plasma, such as an argon plasma, a compressed air plasma, a flame-based plasma or a vacuum plasma. Surfaces treatable by the methods of the invention include ceramic, metal, fabric and organic polymer surfaces. The DNA can be any DNA, such as a marker DNA, which can be linear or circular, single-stranded or double stranded and from about 25 bases to about 10,000 bases in length. Also provided is a method of binding DNA to a surface, including the steps of exposing the surface to a plasma to produce a plasma-treated surface; and applying DNA to the plasma-treated surface to produce surface bound DNA on the treated surface. A system for binding DNA to a surface is also disclosed, the system includes a plasma generator adapted to treating a surface with a plasma to produce a plasma-treated surface; and an applicator containing DNA adapted to applying DNA to the plasma-treated surface to produce surface bound DNA on the plasma-treated surface.
Abstract:
Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful products, such as fuels. For example, systems can use feedstock materials, such as cellulosic and/or lignocellulosic materials and/or starchy materials, to produce ethanol and/or butanol, e.g., by fermentation.
Abstract:
The invention relates to a curable coating composition, a method for curing a curable coating composition and an article comprising a cured composition. The curable coating composition of the invention comprises a thermally curable component and plasmonic particles. The method of the invention concerns a method for curing a curable coating composition comprising plasmonic particles and comprises: exposing the curable coating composition to light comprising electromagnetic waves that are at least partially concentrated by the plasmonic particles.
Abstract:
Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful products, such as fuels. For example, systems can use feedstock materials, such as cellulosic and/or lignocellulosic materials and/or starchy materials, to produce ethanol and/or butanol, e.g., by fermentation.
Abstract:
Methods of increasing the total power of non-thermal plasma power systems are described. Various embodiments of the present invention provide non-thermal plasma reactor assemblies and methods of operating said assemblies, each assembly comprising: (a) at least two non-thermal plasma reactors, each reactor comprising at least one inlet circumferential gas flow inlet apparatus, an electrode, and a flow restricted exit portal, said reactor configured to eject a jet of non-thermal plasma external to said reactor; (b) said at least two non-thermal plasma reactors configured to work in tandem with one another such that a first reactor electrode can be maintained at a high voltage electric potential relative to a second reactor electrode, said first and second reactor electrodes forming an electrode pair able to maintain a non-thermal plasma discharge between the first and second reactor electrodes.
Abstract:
A two step process for the destruction of a precursor material using a steam plasma in a three zone reactor wherein the precursor material is hydrolyzed as a first step in the high temperature zone of the reactor, followed by a second step of medium temperature oxidation of the reactant stream in the combustion zone of the reactor where combustion oxygen or air is injected and immediate quenching of the resulting gas stream to avoid the formation of unwanted by-products. A related apparatus includes a non transferred direct current steam plasma torch, an externally cooled three zone steam plasma reactor means for introducing the precursor material into the plasma plume of the plasma torch, means for introducing the combustion air or oxygen into the combustion zone, means for exiting the reactant mixture from the reactor and means for quenching the reactant mixture located at the exit end of the reactor.
Abstract:
A two step process for the destruction of a precursor material using a steam plasma in a three zone reactor wherein the precursor material is hydrolyzed as a first step in the high temperature zone of the reactor, followed by a second step of medium temperature oxidation of the reactant stream in the combustion zone of the reactor where combustion oxygen or air is injected and immediate quenching of the resulting gas stream to avoid the formation of unwanted by-products. A related apparatus includes a non transferred direct current steam plasma torch, an externally cooled three zone steam plasma reactor means for introducing the precursor material into the plasma plume of the plasma torch, means for introducing the combustion air or oxygen into the combustion zone, means for exiting the reactant mixture from the reactor and means for quenching the reactant mixture located at the exit end of the reactor.
Abstract:
Disclosed is a method for producing particles, including the steps: introducing, into a reaction chamber, at least one reaction flow including a first chemical element and propagating in a direction of flow; projecting a radiation beam through the reaction chamber, intersecting each reaction stream in one interaction area per reaction flow, to form, in each reaction flow, particle cores including the first chemical element; and introducing, into the reaction chamber, a second chemical element interacting with each reaction flow to cover the particle cores with a layer including the second chemical element. Each reaction flow is preferably free of any agent oxidizing the first chemical element. Preferably a ratio of one atom of the second element is introduced per unit of time for at least two atoms of the first element introduced per unit of time. The second element is preferably introduced in at least one confined flow.
Abstract:
Domain segregation of polymer blends or block copolymers in the presence of thermal conducting high aspect ratio nanocrystals leads to preferential placement of conductive filler either inside one domain, which promote the self-assembly of a thermal and/or electrical conducting pathway composed of high aspect ratio filler. The self-assembly of such thermal and/or electrical conducting pathway effectively enhances the thermal and/or electrical conductivity of the composite with significantly less amount of filler.
Abstract:
Disclosed is an apparatus for preparing silicon nanoparticles. The apparatus includes a corona discharge section charging silicon nanoparticles to exhibit unipolarity in order to prevent agglomeration of the silicon nanoparticles after the silicon nanoparticles are generated from an injected gas by plasma reaction of an inductively coupled plasma (ICP) coil. The apparatus may facilitate grain size control of silicon nanoparticles while improving discharge performance of a mesh filter for collection of generated nanoparticles by preventing agglomeration of the silicon nanoparticles generated by plasma reaction using inductively coupled plasma (ICP), and may permit replacement of the mesh filter even during operation of the apparatus, thereby improving productivity while reducing manufacturing costs.