Abstract:
A hand held radiation detector is adapted for scanning the subject while a bar graph at one end of the detector is observed. The field of view of the radiation detector is variable by means of removable lens assemblies which have Fresnel lenses positioned at the focal lengths of the lenses from the radiation sensor. The lens assemblies are matched to provide the same flux density to the radiation sensor independent of the field of view. Crosshairs provided on the rear of a lens support assist in aiming the radiation detector. The time constant of the display is varied with the sensitivity of the display.
Abstract:
A temperature measuring apparatus or device for measuring the temperature of an object or a series of closely adjacent objects through the measurement of relative infrared radiation is normally referred to as an infrared thermometer. Known infrared thermometers can be modified so as to be useful in making stress-degree measurements as are needed in determining when plants or crops should be watered or irrigated by including within such devices a temperature detector capable of providing an electrical signal. Such modified thermometers include a circuit which relates the signal produced by the temperature detector to the signal produced by the infrared radiation detector used in such a device so as to display the difference between the temperature detected by the infrared detector used and the temperature detected by the temperature detector.
Abstract:
A balancing radiometer for measuring the intensity of incident electromagnetic radiation comprises: a pair of identical sensors, each including a thermally conductive substrate, at least one surface of the substrate being comprised of an electrically insulating material, and means disposed on the one surface for resisting the flow of electric current and absorbing incident radiation; means for shielding one of the two sensors from the radiation source, the other sensor being unshielded; means disposed in thermal conducting relation with the substrate of the shielded sensor for providing a first signal proportional to the temperature of the shielded sensor; second means disposed in thermal conducting relation with the substrate of the unshielded sensor for providing a second signal proportional to the temperature of the unshielded sensor; means for comparing the first and second signals; variable power supply means responsive to the signal comparing means; means for connecting the power supply means to the shielded sensor for heating the shielded sensor to a temperature equal to the temperature of the unshielded sensor; and means for measuring the power output of said power supply means.
Abstract:
The present disclosure is directed to a sensor package having a thermopile sensor and a reference (or dark channel) thermopile sensor disposed therein for temperature measurements. In one or more implementations, the sensor package includes a substrate, a thermopile sensor disposed over the substrate, a reference thermopile sensor disposed over the substrate, a reference temperature sensor disposed over the substrate surface, a lid assembly disposed over the thermopile sensor and the reference thermopile sensor, and a thermo-optical shield. The thermo-optical shield defines an aperture over the thermopile sensor such that at least a portion of the thermo-optical shield is positioned over the reference thermopile sensor to provide optical and thermal shielding for portions of the sensor package.
Abstract:
Flight based infrared imaging systems and related techniques, and in particular UAS based thermal imaging systems, are provided to improve the monitoring capabilities of such systems over conventional infrared monitoring systems. An infrared imaging system is configured to compensate for various environmental effects (e.g., position and/or strength of the sun, atmospheric effects) to provide high resolution and accuracy radiometric measurements of targets imaged by the infrared imaging system. An infrared imaging system is alternatively configured to monitor regulatory limitations on operation of the infrared imaging system and adjust and/or disable operation of the infrared imaging systems accordingly.
Abstract:
Devices and corresponding methods can be provided to monitor or measure temperature of a target or to control a process. Targets can have low, unknown, or variable emissivity. Devices and corresponding methods can be used to measure temperatures of thin film, partially transparent, or opaque targets, as well as targets not filling a sensor's field of view. Temperature measurements can be made independent of emissivity of a target surface by, for example, inserting a target between a thermopile sensor and a background surface maintained at substantially the same temperature as the thermopile sensor. In embodiment devices and methods, a sensor temperature can be controlled to match a target temperature by minimizing or zeroing a net heat flux at the sensor, as derived from a sensor output signal. Alternatively, a target temperature can be controlled to minimize the heat flux.
Abstract:
The present invention provides an optical detector device, including: a metal absorber layer; and a dielectric cover layer coupled to the metal absorber layer, wherein the dielectric cover layer includes one or more antireflective structured surfaces. The optical detector device further includes one or more of a passive substrate layer and an active thermoelectric element layer coupled to the metal absorber layer opposite the dielectric cover layer. The one or more antireflective structured surfaces each utilize a random pattern.
Abstract:
Various arrangements for detecting an object using a passive infrared (PIR) sensor module of a sensor device. A PIR data stream may be received from the PIR sensor module indicative of measurements performed by the PIR sensor module. An indication may be received from a transceiver that identifies a beginning of the data transmission. A portion of the PIR data stream may be blanked in response to receiving the indication of the beginning of the data transmission, the portion of the PIR data stream corresponding to a defined time duration. A presence of an object may be determined using the PIR data stream, excluding the blanked portion.
Abstract:
In a method for noncontact, radiation thermometric temperature measurement, a short-circuit photocurrent that is proportional to a received radiant power is produced in a photodiode radiation detector that is operating photovoltaically without bias voltage. The photocurrent is processed in a current to voltage converter. Subsequently, a temperature signal corresponding to the radiant power is generated. A corrective current, dependent on a temperature of the photodiode radiation detector, is added to the short-circuit photocurrent to compensate a fault current, wherein the fault current is based on an input bias current and an input offset voltage of the current to voltage converter across a temperature-dependent shunt resistance of the photodiode radiation detector. A device with a corrective current source controlled by a microcontroller is provided that can be used to perform the method.
Abstract:
The invention relates to a device for measuring the temperature in the anus or in the vagina of an animal, wherein a front longitudinal part, an abutment part and a rear longitudinal part lie in succession on the device, wherein the front longitudinal part is equipped with a temperature sensor and, when used as intended, it is intended to be inserted into the anus or the vagina of the animal until the abutment part approximately rests against the outside of the body of the animal. One or more further temperature sensors are attached to the rear longitudinal part and/or to the abutment part, which, when used as intended, are provided for measuring the temperature in the surroundings of the animal.