Abstract:
The application describes a rotatable anode for an X-ray tube, wherein the anode comprises a first unit (901) adapted for being hit by a first electron beam at least a second unit (902) adapted for being hit by at least a second electron beam, wherein the first unit and the at least second unit are electrically isolated from each other. Further, the application describes an X-ray system, wherein the system comprises an anode according to the specification, a main cathode for generating an electron beam, wherein the main cathode is adapted to generate a first electrical potential, an auxiliary cathode for influencing a second electrical potential, wherein the main cathode is adapted to deflect the electron beam in order to heat the auxiliary cathode. Furthermore, the application shows a device for determining an electrical potential by detecting the point of impact of an electron beam onto an anode according to the specification and/or by detecting an X-ray spectrum of radiation starting from an anode according to the specification, wherein the electron beam is generated by a cathode, wherein the electron beam hits the first unit of the anode at the point of impact, wherein the electron beam can be deflected, wherein the deflected electron beam hits the second unit of the anode at the point of impact, wherein the first unit and/or second unit emit the radiation.
Abstract:
A multiple wavelength x-ray source includes a multi-thickness target, having at least a first and a second thickness. The first thickness can substantially circumscribe the second thickness. An electron beam can be narrowed to impinge primarily upon second thickness or expanded to impinge primarily upon the first thickness while maintaining a constant direction of the beam. This invention allows the target thickness to be optimized for the desired output wavelength without the need to redirect or realign the x-rays towards the target.
Abstract:
Systems, methods, and devices with improved electrode configuration for downhole nuclear radiation generators are provided. For example, one embodiment of a nuclear radiation generator capable of downhole operation may include a charged particle source, a target material, and an acceleration column between the charged particle source and the target material. The acceleration column may include several electrodes shaped such that substantially no electrode material from the electrodes is sputtered onto an insulator surface of the acceleration column during normal downhole operation.
Abstract:
One example embodiment includes an electron emitter. The electron emitter comprises a conductive member that defines a plurality of filament segments that are integral with each other. Each filament segment includes an intermediate portion and an interconnecting portion attached to an adjacent filament segment. The intermediate portions are substantially coplanar with each other and each intermediate portion includes a substantially planar electron emission surface.
Abstract:
A cathode assembly including certain features designed to protect the integrity of a filament contained therein is disclosed. In particular, the cathode assembly is configured to prevent damage to the filament should it inadvertently contact another portion of the cathode assembly. In an example embodiment, an x-ray tube incorporating features of the present invention is disclosed. The x-ray tube includes an evacuated enclosure containing a cathode assembly and an anode. The cathode assembly includes a head portion having a head surface. A slot is defined on the head surface and an electron-emitting filament is included in the slot. A protective surface is defined on the head surface proximate to a central portion of the filament. The protective surface in one embodiment is composed of tungsten and is configure to prevent fusing of the filament to the protective surface should the filament inadvertently contact the protective surface.
Abstract:
An electron emitter assembly for use in an x-ray emitting device or other electron emitter-containing device is disclosed. In one embodiment, an x-ray tube is disclosed, including a vacuum enclosure that houses both an anode having a target surface, and a cathode positioned with respect to the anode. The cathode includes an electron emitter assembly for emitting a beam of electrons during tube operation. The electron emitter assembly comprises a refractory metal foil with a plurality of shaped rung structures for emitting an electron beam that maximizes flux while simultaneously focusing the electron beam in two dimensions. Focusing occurs primarily through an electrical field shaped by the electron emitter assembly and through balancing current density, electrical resistance, and heat loss through thermal conduction to control the regions that emit electrons. Furthermore, the refractory metal foil can be configured with a modified work function for preferential electron emission.
Abstract:
A cathode has a cathode body with a surface emitter composed of an electrically conductive ceramic material. The cathode has a high electron emission and a long lifespan.
Abstract:
An apparatus and method for determining the density and other properties of a formation surrounding a borehole using a high voltage x-ray generator. One embodiment comprises a stable compact x-ray generator capable of providing radiation with energy of 250 keV and higher while operating at temperatures equal to or greater than 125° C. In another embodiment, radiation is passed from an x-ray generator into the formation; reflected radiation is detected by a short spaced radiation detector and a long spaced radiation detector. The output of these detectors is then used to determine the density of the formation. In one embodiment, a reference radiation detector monitors a filtered radiation signal. The output of this detector is used to control at least one of the acceleration voltage and beam current of the x-ray generator.
Abstract:
A cathode has a cathode head in which is arranged a surface emitter is arranged that emits electrons upon the application of a heating voltage. At least one electrically conductive barrier plate that is galvanically separated from the surface emitter extends up to the surface emitter. This cathode has a longer lifespan, a high electron emission and a good blocking capability.
Abstract:
An apparatus and method for determining the density and other properties of a formation surrounding a borehole using a high voltage x-ray generator. One embodiment comprises a stable compact x-ray generator capable of providing radiation with energy of 260 keV and higher while operating at temperatures equal to or greater than 125° C. In another embodiment, radiation is passed from an x-ray generator into the formation; reflected radiation is detected by a short spaced radiation detector and a long spaced radiation detector. The output of these detectors is then used to determine the density of the formation. In one embodiment, a reference radiation detector monitors a filtered radiation signal. The output of this detector is used to control at least one of the acceleration voltage and beam current of the x-ray generator.