Abstract:
A transmission type micro-focus X-ray generation apparatus includes an electron reflector, an electron passage surrounded by the electron reflector, an electron source, and a target. X-rays are generated by irradiating the target with electrons that have been emitted from the electron source and that have passed through the electron passage. The electron passage has a conical shape having a cross-sectional area that increases from an outlet on the target side toward an inlet on the electron source side. A material of the target is molybdenum, tantalum, or tungsten. The atomic number of a material of the electron reflector is greater than or equal to the atomic number of the material of the target.
Abstract:
An anode (30) is formed by building a carbon, such as a carbon reinforced carbon composite, or other ceramic substrate (50). A ductile, refractory metal is electroplated on the ceramic substrate to form a refractory metal carbide layer (52) and a ductile refractory metal layer (54), at least on a focal track portion (36). A high-Z refractory metal is vacuum plasma sprayed on the ductile refractory metal layer to forma vacuum plasma sprayed high-Z refractory metal layer (56), at least on the focal track portion.
Abstract:
An X-ray generating apparatus controls driving of an X-ray tube. The X-ray tube includes an electron source emitting electrons due to application of a voltage, a transmission-type target generating an X-ray due to collision of electrons emitted from the electron source, and a shield member disposed between the electron source and the transmission-type target, the shield member having an opening that electrons emitted from the electron source pass through, and blocking an X-ray that scatters toward the electron source. When generating the X-ray, application of a voltage to the transmission-type target is started, and emission of electrons from the electron source is caused after passage of a predetermined period indicating a time period from starting voltage application until the transmission-type target reaches a predetermined voltage. When stopping X-ray generation, application of the voltage to the transmission-type target is stopped after stopping the emission of electrons from the electron source.
Abstract:
An X-ray source includes an electron-beam generating unit that generates an electron beam, and a transmission type target electrode to be irradiated with the electron beam to generate X-ray radiation. A plurality of convex portions each having an inclined surface with respect to an incident direction of the electron beam is formed on a surface of the transmission type target electrode.
Abstract:
The present invention provides a transmission type X-ray tube and a reflection type X-ray tube. The transmission type X-ray tube comprises a target and a filter material. The target has at least one element which produces X-rays as being excited. The X-rays comprise characteristic Kα and Kβ emission energies of the element for producing images of an object impinged by the X-rays. The filter material through which the X-rays pass has a k-edge absorption energy that is higher than the Kα emission energies and is lower than the Kβ emission energies. The thickness of the filter material is at least 10 microns and less than 3 millimeters.
Abstract:
An X-ray tube comprises: an envelope which has a cathode at one end and an anode at another end of a barrel of a tubular insulating tube and which has a sealed interior; an electron gun which is arranged inside the envelope and has a shape that protrudes from the cathode; and a target which is electrically connected to the anode and generates X-rays when being irradiated with electrons emitted from the electron gun. With reference to an end position that is a projection of a position of an end on the anode side of the electron gun onto an inner wall of the insulating tube, a mean wall thickness of the barrel is greater on the cathode side than on the anode side.
Abstract:
During operation of an x-ray source, an electron source emits a beam of electrons. Moreover, a repositioning mechanism selectively repositions the beam of electrons on a surface of a target based on a feedback parameter, where a location of the beam of electrons on the surface of the target defines a spot size of x-rays output by the x-ray source. In response to receiving the beam of electrons, the target provides a transmission source of the x-rays. Furthermore, a beam-parameter detector provides the feedback parameter based on a physical characteristic associated with the beam of electrons and/or the x-rays output by the x-ray source. This physical characteristic may include: at least a portion of an optical spectrum emitted by the target, secondary electrons emitted by the target based on a cross-sectional shape of the beam of electrons; an intensity of the x-rays output by the target; and/or a current from the target.
Abstract:
An X-ray imaging system that generates a large amount of X-rays sufficient for X-ray imaging and collimates X-rays in a direction parallel to each other at high density. The X-ray imaging system includes an X-ray generating apparatus to generate and emit X-rays, a detector to detect the X-rays emitted from the X-ray generating apparatus, and at least one collimator disposed between the X-ray generating apparatus and the detector to prevent dispersion of the X-rays emitted from the X-ray generating apparatus.
Abstract:
A method for inducing chemical reactions using X-ray radiation comprises generating an irradiation volume within the interior of a reaction vessel by introducing X-ray radiation into the volume, in which two or more reactants are introduced. With respect to the two or more reactants and any subsequently created intermediate reactant or reactants, the aggregate extent to which the foregoing reactants are to be ionized to any degree is selectively controlled, and the average degree of ionization in the irradiation volume, from partial to total, of that portion of the foregoing reactants which is to be ionized is selectively controlled, through control of the fluence and energy of the X-ray radiation, to thereby induce selective reactions of reactants to occur in the irradiation volume. One or more reactants may be delivered through a double-walled pipe containing X-ray shielding to prevent their premature irradiation before being injected into the irradiation volume.
Abstract:
In one example, an x-ray target comprises a substrate, a target core, and a target track. The substrate and target core are attached together utilizing a carbide layer and a braze layer.