Abstract:
An X-ray tube comprising: a cathode including an emitter; an anode; a first magnetic quadrupole formed on a first yoke and having a magnetic quadrupole gradient for focusing an electron beam in a first direction and defocusing the beam in a second direction; a second magnetic quadrupole formed on a second yoke and having a magnetic quadrupole gradient for focusing the electron beam in the second direction and defocusing the electron beam in the first direction; wherein a combination of the first and second magnetic quadrupoles provides a net focusing effect in both first and second directions of a focal spot of the electron beam; and a pair of opposing quadrupole electromagnetic coils having alternating current offset being configured to deflect the electron beam in order to shift the focal spot of the electron beam on a target.
Abstract:
This X-ray tube device includes an anode and a cathode including an emitter emitting an electron to the anode. The emitter includes an electron emission portion in a flat plate shape, a pair of terminal portions extending from the electron emission portion, connected to an electrode, and a supporting portion provided separately from the terminal portions, insulated from the electrode, supporting the electron emission portion.
Abstract:
According to one embodiment, an X-ray tube device includes a cathode which emits an electron in a direction of an electron path, an anode target which faces the cathode and includes a target surface generating an X-ray, a vacuum envelope which accommodates the cathode and the anode target and is sealed in a vacuum-tight manner, and a quadrupole magnetic field generation unit which forms a magnetic field when direct current is supplied from an electric source, is eccentrically provided with respect to a straight line accordance with the electron path outside the vacuum envelope, and includes a quadrupole surrounding a circumference of a part of the electron path.
Abstract:
Technology is described for electronically aligning a central ray of an x-ray tube to a radiation detector. In an example, an x-ray system includes an x-ray tube and a tube control unit (TCU). The x-ray tube includes a cathode that includes an electron emitter configured to emit an electron beam, an anode configured to receive the electron beam and generate x-rays with a central ray from electrons of the electron beam colliding on a focal spot of the anode, and a steering magnetic multipole between the cathode and the anode that is configured to produce a steering magnetic field from a steering signal. At least two poles of the steering magnetic multipole are on opposite sides of the electron beam. The TCU includes at least one steering driver configured to generate the steering signal. The TCU is configured to convert an offset value to the steering signal.
Abstract:
A method of designing an electron emitter can include: determining a desired cross-sectional profile of an electron emission from an electron emitter and inputting parameters of the electron emitter into a computer; determining a desired temperature profile for the electron emitter that emits the desired cross-sectional profile; and determining desired emitter dimensions for a defined electrical current through the electron emitter that produces the desired temperature profile with the computer based on the input parameters of the electron emitter. The emitter dimensions can include: each rung width dimension; each first gap segment dimension; each second gap segment dimension; and each web dimension. The emitter can include: a plurality of elongate rungs connected together in a planar pattern; a plurality of corners; a first gap between adjacent non-connected elongate rungs; a second gap between adjacent non-connected elongate rungs; and one or more cutouts between a corner apex and corner nadir.
Abstract:
A radiographic image diagnostic apparatus according to embodiments includes an X-ray tube, a holding member, and coil control circuitry. The X-ray tube includes: a cathode that emits electrons; coils that generate electromagnetic force; and an anode that rotates about a rotation axis in response to the electromagnetic force and to generate an X-ray by receiving the electrons. The holding member holds the X-ray tube so that the X-ray tube is movable. The coil control circuitry controls a current to be supplied to the coils based on at least one of a position of the X-ray tube, a direction of the X-ray tube, or a velocity of the X-ray tube.
Abstract:
An X-ray tube can include: a cathode including an electron emitter; an anode configured to receive the emitted electrons; a first magnetic quadrupole between the cathode and the anode and having a first quadrupole yoke with four first quadrupole pole projections extending from the first quadrupole yoke and oriented toward a central axis of the first quadrupole yoke and each of the four first quadrupole pole projections having a first quadrupole electromagnetic coil; a second magnetic quadrupole between the first magnetic quadruple and the anode and having a second quadrupole yoke with four second quadrupole pole projections extending from the second quadrupole yoke and oriented toward a central axis of the second quadrupole yoke and each of the four second quadrupole pole projections having a second quadrupole electromagnetic coil; and a magnetic dipole between the cathode and anode and having a dipole yoke with four dipole electromagnetic coils.
Abstract:
A medical imaging method comprising generating a radiation at a first energy level by a radiation source, generating a radiation at a second energy level different from the first energy level by the radiation source, emitting the generated radiations at an output of the radiation source towards a detector, and blocking or diverting the emitted radiations during at least one intermediate phase during which the radiation source switches in a transient way from one of the first energy level and the second energy level to the other of the first energy level and the second energy level.
Abstract:
An X-ray tube is provided. The X-ray tube includes a first housing including an X-ray window formed therein, a second housing being rotatable about a rotational shaft installed within the first housing, an anode installed on the rotational shaft within the second housing and positioned in one side of the rotational shaft in an extending direction of the rotational shaft, an emitter installed on the rotational shaft within the second housing, positioned in the other side of the rotational shaft in the extending direction of the rotational shaft, and emitting electron beams, a lens unit installed between the anode and the emitter and focusing the electron beams emitted from the emitter to the anode, and an electron beam deflection unit installed on the rotational shaft to deflect an angle of electron beams moving toward the anode from the lens unit.
Abstract:
An X-ray tube can include: a cathode planar emitter that emits an inhomogeneous electron beam; an anode to receive the electron beam; a first magnetic quadrupole having a first yoke with four evenly distributed first pole projections extending from the first yoke and oriented toward a central axis of the first yoke and each of the four first pole projections having a first quadrupole electromagnetic coil; a second magnetic quadrupole having a second yoke with four evenly distributed second pole projections extending from the second yoke and oriented toward a central axis of the second yoke and each of the four second pole projections having a second quadrupole electromagnetic coil; and at least one coil of a first pair of opposing coils with alternating current offset from the power supply.