Abstract:
The invention provides a PCB with a thin film capacitor embedded therein and a method for manufacturing the same. The PCB includes a lower electrode formed on an insulating substrate; an amorphous paraelectric film formed on the lower electrode via low temperature film formation; a buffer layer formed on the amorphous paraelectric film; a metal seed layer formed on the buffer layer; and an upper electrode formed on the metal seed layer.
Abstract:
A method of manufacturing a thin film capacitor includes steps of: performing recrystallization heat treatment on a metal foil; forming a dielectric layer on a top surface of the recrystallized metal foil; heat treating the metal foil and the dielectric layer; and forming an upper electrode on a top surface of the heat-treated dielectric layer. The recrystallization heat treatment prevents the oxidation of a metal foil, by which a dielectric layer can be heat treated at a high temperature, thereby improving electric properties of a thin film capacitor and the reliability of a product.
Abstract:
Methods and devices for cooling printed circuit boards having at least one heat source are disclosed and described. The method can include coating a layer of diamond-like carbon (DLC) over at least a portion of the printed circuit board in order to accelerate movement of heat away from the heat source. Various heat sources may be present on a printed circuit board. In one aspect, the heat source can be an active heat source such as a heat-generating electronic component.
Abstract:
The present invention relates to a thin layer capacitor including first and second metal electrode layers and a dielectric layer of BiZnNb-based amorphous metal oxide having a dielectric constant of at least 15, interposed between the metal layers, and a layered structure having the same. The layered structure includes a first metal electrode layer formed on a polymer-based composite substrate, a dielectric layer, formed on the first metal electrode layer, and made of BiZnNb-based metal oxide with a dielectric constant of at least 15, and a second metal electrode layer formed on the dielectric layer. The BiZnNb-based amorphous metal oxide in this invention has a high dielectric constant without a thermal treatment for crystallization, useful for fabrication of a thin layer capacitor of a polymer-based layered structure such as a PCB.
Abstract:
A patterning method includes providing a first material (e.g., copper) and transforming at a least a surface region of the first material to a second material (e.g., copper oxide). One or more portions of the second material (e.g., copper oxide) are converted to one or more converted portions of first material (e.g., copper) while one or more portions of the second material (e.g., copper oxide) remain. One or more portions of the remaining second material (e.g., copper oxide) are removed selectively relative to converted portions of first material (e.g., copper). Further, a thickness of the converted portions may be increased. Yet further, a diffusion barrier layer may be used for certain applications.
Abstract:
Disclosed are organic-compatible thin film processing techniques with reactive (such as Ti) layers for embedding capacitors into substrates. Hydrothermal synthesis allows direct deposition of high-k films with capacitance density of about 1 μF/cm2 on organic substrates. This is done by reactively growing a high-k film from Ti foil/Ti-coated copper foil/Ti precursor-coated organic substrate in an alkaline barium ion bath. Alternatives may be used to address multiple coatings, low temperature baking, low temperature pyrolysis with oxygen plasma, etc. Sol-gel and RF-sputtering assisted by a reaction with the intermediate layer and a foil transfer process may be used to integrate perovskite thin films with a capacitance in the range of 1-5 μF/cm2. Thermal oxidation of titanium foil/Ti-coated copper foil/Ti-coated organic substrate with a copper conductive layer is also a reactively grown high-k film process for integrating capacitance of hundreds of nF with or without using a foil transfer process.
Abstract translation:公开了具有用于将电容器嵌入衬底中的反应性(例如Ti)层的有机相容薄膜处理技术。 水热合成允许在有机衬底上直接沉积具有约1μF/ cm 2的电容密度的高k膜。 这是通过在碱性钡离子浴中从Ti箔/ Ti涂覆的铜箔/ Ti前体涂覆的有机衬底上反应生长高k膜而完成的。 替代品可用于处理多层涂料,低温烘烤,氧等离子体的低温热解等。通过与中间层反应和箔转移工艺进行辅助的溶胶 - 凝胶和RF溅射可用于整合钙钛矿薄膜 电容量在1-5μF/ cm 2之间。 具有铜导电层的钛箔/ Ti涂覆的铜箔/ Ti涂覆的有机衬底的热氧化也是用于利用或不使用箔转移工艺来集成数百nF的电容的反应生长的高k膜工艺。
Abstract:
A method is disclosed for fabricating a patterned embedded capacitance layer. The method includes fabricating (1305, 1310) a ceramic oxide layer (510) overlying a conductive metal layer (515) overlying a printed circuit substrate (505), perforating (1320) the ceramic oxide layer within a region (705), and removing (1325) the ceramic oxide layer and the conductive metal layer in the region by chemical etching of the conductive metal layer. The ceramic oxide layer may be less than 1 micron thick.
Abstract:
A substrate has a base, an intermediate layer, a conductive layer, and conductive films. The base is a ceramic insulator. The intermediate layer is on a main surface of the base. The conductive layer is on the intermediate layer. The conductive films are on the conductive layer, covering an exposed portion of the conductive layer.
Abstract:
Dielectric structures particularly suitable for use in capacitors having a layer of a dielectric material including a dopant that provides a positive topography are disclosed. Methods of forming such dielectric structures are also disclosed. Such dielectric structures show increased adhesion of subsequently applied conductive layers.
Abstract:
According to a flexible thin film capacitor of the present invention, an adhesive film is formed on a substrate composed of at least one selected from the group consisting of an organic polymer and a metal foil, and an inorganic high dielectric film and metal electrode films are formed thereon. A metal oxide adhesive film can be used as the adhesive film. The adhesive film is formed in contact with the inorganic high dielectric film and at least one of the metal electrode films.