Abstract:
An electronic part mounting method, a semiconductor module, and a semiconductor device, which can reduce a mounting area and a device thickness. In an electronic part mounting method for bonding an electrode formed on a substrate and an electrode formed on an electronic part to each other, the method comprises the step of bonding both the electrodes through a metal layer made up of aggregated particles of at least one kind of metal. Then, the metal particles have an average particle size of 1 to 50 nm. Preferably, the metal particles form a metal layer having a thickness of 5 to 100 μm.
Abstract:
A light-emitting diode (LED) assembly includes a circuit board (10), at least one LED (20) being electrically connected with and being arranged on a side of the circuit board, and a heat dissipation apparatus (40) being arranged on an opposite side of the circuit board. The circuit board defines at least one through hole (102) corresponding to a position of the at least one LED. Thermal interface material (140) is filled in the at least one hole of the circuit board to thermally interconnect the at least one LED and the heat dissipation apparatus. The thermal interface material is a composition of nano-material and macromolecular material.
Abstract:
A composition includes a decomposition product of a metal precursor. The metal precursor may include a carbamate and one or more metal selected from the group consisting of silver, gold, copper, and zinc. The decomposition product may include a metal nanoparticle. The metal nanoparticle may be present in an amount that is sufficient to render the composition electrically conductive, thermally conductive, or both electrically and thermally conductive. An associated article and method are provided.
Abstract:
A solvent cast film comprises a polyimide comprising structural units derived from polymerization of a dianhydride component comprising a dianhydride selected from the group consisting of 3,4′-oxydiphthalic dianhydride, 3,3′-oxydiphthalic dianhydride, 4,4′-oxydiphthalic dianhydride, and combinations thereof, with a diamine component comprising 4,4′-diaminodiphenylsulfone; wherein the polyimide has a glass transition temperature from 190° C. to 400° C.; and wherein the film has a coefficient of thermal expansion of less than 60 ppm/° C., a thickness from 0.1 to 250 micrometers, endless than 5% residual solvent by weight.
Abstract:
A system and a method are provided for ink-jet printing a solderable conductive pad onto a substrate. The system comprises at least one print head and a curing station for curing an ink deposited onto the substrate. The system is configured to: deposit at least a first layer of a first ink onto the substrate; cure the first layer of the first ink; deposit at least an intermediate layer of a second ink on top of the cured first layer of the first ink; cure the intermediate layer of the second ink; deposit at least a last layer of the first ink on top of the cured intermediate layer of the second ink; and cure the last layer of the first ink. The first ink has a relatively high conductivity. The second ink has a relatively low conductivity. The first layer, the intermediate layer, and the last layer may be arranged such that when solder is applied to the last layer, the solder is prevented from leaching through to the first layer.
Abstract:
A conductor composition being able to easily secure the conductivity at the same level as an Ag bulk at low temperature process, a mounting substrate utilizing the conductor composition and a mounting structure utilizing the conductor composition are provided. In a mounting structure, wherein one or more electrodes (11) of a mounting substrate (10) and one or more surface mounting components (20) are connected through a conductor composition (30), and one or more surface wirings (14) of the mounting substrate (10), one or more inner-layer wirings (13) and one or more via conductors (12) are formed with the conductor composition, the conductor composition contains conductive particles with electrical conductivity, and the conductive particles are composed of low crystallized Ag fillers with the crystal size of 10 nm or less.
Abstract:
The invention relates to a polymeric composition containing: a) at least one epoxy resin; b) at least one copolymer with groups, which react with epoxy resins, and with a glass transition temperature Tg of −20° C. or lower, c) nanoparticles having a mean particle size dmax ranging from 5 to 150 nm that is measured by means of a small-angle neutron scattering (SANS). The inventive composition enables the production of adhesives, composite materials, coatings and casting compounds exhibiting improved mechanical properties, particularly improve impact strength.
Abstract translation:本发明涉及一种聚合物组合物,其含有:a)至少一种环氧树脂; b)至少一种具有与环氧树脂反应并具有-20℃或更低的玻璃化转变温度T g的基团的共聚物,c)具有平均粒度d max SUB>范围为5到150nm,这是通过小角度中子散射(SANS)测量的。 本发明的组合物使得能够生产表现出改进的机械性能的粘合剂,复合材料,涂料和浇铸化合物,特别是改善冲击强度。
Abstract:
A capacitor material including a thermosetting resin (e.g., epoxy resin), a high molecular mass flexibilizer (e.g., phenoxy resin), and a quantity of nano-particles of a ferroelectric ceramic material (e.g., barium titanate), the capacitor material not including continuous or semi-continuous fibers (e.g., fiberglass) as part thereof. The material is adapted for being positioned in layer form on a first conductor member and heated to a predetermined temperature whereupon the material will not possess any substantial flaking characteristics. A second conductor member may then be positioned on the material to form a capacitor member, which then may be incorporated within a substrate to form a capacitive substrate. Electrical components may be positioned on the substrate and capacitively coupled to the internal capacitor.
Abstract:
A thin film pattern forming device includes a chamber having an inner space communicated with the outside, a first fixing unit provided in the chamber case, a pattern electrode plate having a protrusion electrode protruded with a certain shape, and fixed to the first fixing unit, a second fixing unit provided in the chamber case and spaced apart with a certain gap from the pattern electrode plate, for fixing a substrate on which an inked metallic nano-material is deposited, a power supply unit for supplying power to the first fixing unit and the second fixing unit so as to form electrodes thereat, and a drying unit for drying the inked metallic nano-material patterned on the substrate. A metal thin film line such as a gate line can be simply formed on the substrate, and a processing time can be shortened. Furthermore, required equipment is simplified thus to reduce an installation cost and to enhance a productivity.
Abstract:
A material for use as part of an internal resistor within a circuitized substrate includes a polymer resin and a quantity of nano-powders including a mixture of at least one metal component and at least one ceramic component. The ceramic component may be a ferroelectric ceramic and/or a high surface area ceramic and/or a transparent oxide and/or a dope manganite. Alternatively, the material will include the polymer resin and nano-powders, with the nano-powders comprising at least one metal coated ceramic and/or at least one oxide coated metal component. A circuitized substrate adapted for using such a material and resistor therein and a method of making such a substrate are also provided. An electrical assembly (substrate and at least one electrical component) and an information handling system (e.g., personal computer) are also provided.