Abstract:
The present invention is a mobile device capable of transmitting or receiving wireless signals and incorporating an FPC shielded RF signal conductor for connecting transmitter and/or receiver circuitry to an associated RF antenna or antennas. In some embodiments FCP may incorporate the antenna in an unshielded section of the FPC. In some embodiments a single FPC may provide for multiple RF carrier conductors each with their own associated shielding.
Abstract:
A shielded cable interface module having cable receiving grooves extending laterally to an edge of the board, each including a center conductor groove, an insulator groove, and a shield groove. A center conductor via and a shield via extend through the board. A conductor plane on the cable termination side surrounds the cable receiving grooves. The conductor plane includes a non-conductor region within the conductor plane adjacent to each of the conductor center conductor grooves. Ground vias associated with the cable receiving grooves are spaced apart from and partially surround the center conductor via outside and adjacent to the non-conductor region, the ground vias extend through the printed circuit board from the cable termination side to the system interface side.
Abstract:
A compact via transmission line for a printed circuit board having preferred characteristic impedance and capable of miniaturizing the printed circuit board including a multilayer printed circuit board, and extending the frequency range of a via transmission line mounted on the printed circuit board, and a design method of the same. The transmission line has a central conductor forming an inner conductor layer boundary make up a signal via hole, a plurality of via holes arranged around the central conductor form an outer conductor layer boundary, and a plurality of conductor plates formed of a printed circuit board conductor layer, is further provided with a constitutive parameter adjustment clearance hole between the inner and outer conductor layer boundaries of the compact via transmission line, and electrically isolates to prevent cross-talk of a signal propagating through a signal via hole with other signals in a high-frequency signal band.
Abstract:
A package substrate free of malfunction or error even with an IC chip in a high frequency range, particularly an IC chip with a frequency exceeding 3 GHz, is provided. A conductor layer 34P on a core substrate 30 is formed to have a thickness of 30 μm and a conductor circuit 58 on an interlayer resin insulating layer 50 is formed to have a thickness of 15 μm. By making the conductor layer 34P thick, it is possible to increase a volume of the conductor itself and decrease resistance. Further, by employing the conductor layer 34 as a power supply layer, it is possible to improve a capability of supplying power to the IC chip.
Abstract:
A self-fixturing, self-aligning coaxial connector assembly is provided. The coaxial connector assembly comprises a coaxial connector, a coaxial housing and a printed circuit board. The printed circuit board is aligned properly with the electrical end of the coaxial connector when mounted on the coaxial housing and is held in place while the printed circuit board is coupled to the coaxial housing.
Abstract:
Disclosed herein is a method comprising drilling a first hole in a multilayered device; the multilayered device comprising a fill layer disposed between and in intimate contact with two layers of a first electrically conducting material; the fill layer being electrically insulating; plating the first hole with a slurry; the slurry comprising a magnetic material, an electrically conducting material, or a combination comprising at least one of the foregoing materials; filling the first hole with a fill material; the fill material being electrically insulating; laminating a first layer and a second layer on opposing faces of the multilayered device to form a laminate; the opposing faces being the faces through which the first hole is drilled; the first layer and the second layer each comprising a second electrically conducting material; drilling a second hole through the laminate; the second hole having a circumference that is encompassed by a circumference of the first hole; and plating the surface of the second hole with a third electrically conducting material.
Abstract:
A signal transmission structure is at the edge of a circuit board, and the circuit board is connected with a coaxial cable connector through the signal transmission structure. The coaxial cable connector has a signal pin and a plurality of supporting pins for clipping the circuit board. The signal transmission structure includes a reference plane and a conductive layer. The reference plane with a non-conductive area is inside the circuit board. The conductive layer is disposed on the surface of the circuit board and above one side of the reference plane. The conductive layer includes a signal pad and a signal line. The signal line is connected with the signal pad, and the signal pad is further connected with the signal pin of the coaxial connector. The projections of the signal pad and the portion of the signal line on the reference plane are in the non-conductive area.
Abstract:
A method of fabricating a printed circuit board having a coaxial via is disclosed. The method includes assembling a plurality of layers configured in a stack so that the plurality of layers has a top signal layer and a bottom signal layer; forming a hollow via through the plurality of layers to connect GND layers in the printed circuit board, forming or inserting into the hollow via a conductor coated with non-conductive material, covering the top layer and bottom layer with dielectric and patterned signal layers, covering the top layer and bottom layer with a masking agent, plating the top layer and bottom layer with a conductive material that connects signal traces within via, and removing the masking agent from the top layer and bottom layer.
Abstract:
A method of fabricating a printed circuit board having a coaxial via, includes. The method includes assembling a plurality of layers configured in a stack so that the plurality of layers has a top signal layer and a bottom signal layer; forming a hollow via through the plurality of layers to connect GND layers in the printed circuit board, forming or inserting into the hollow via a conductor coated with non-conductive material, covering the top layer and bottom layer with dielectric and patterned signal layers, covering the top layer and bottom layer with a masking agent, plating the top layer and bottom layer with a conductive material that connects signal traces within via, and removing the masking agent from the top layer and bottom layer.
Abstract:
According to one embodiment, a printed circuit board includes a printed wiring board including a through hole part, an electronic component including a component body and a lead member inserted into the through hole part to be electrically connected thereto, a metal member disposed around and separated from the through hole part, and a solder resist disposed at least around the metal member, at least a part of the component body being mounted on the solder resist