Abstract:
A high-frequency integrated circuit (IC) module comprising a multilayer mounting board on which an integrated circuit with a plurality of high-frequency signal terminals is mounted, and IC connecting portions disposed on one surface of the multilayer mounting board and respectively connected with the high-frequency signal terminals. The high-frequency IC module further comprises external connection terminal portions disposed at wider intervals than those between the high-frequency signal terminals, high-frequency signal lines provided within the multilayer mounting board, first through holes for connecting the inner ends of the high-frequency signal lines with the IC connecting portions, and second through holes for connecting the outer ends of the high-frequency signal lines with the external connection terminal portions. At least between the high-frequency signal lines, a high-frequency restricting member for ground-connecting both surfaces of the multilayer mounting board and restricting propagation of high-frequency signals is provided along the high-frequency signal lines.
Abstract:
Method of fixing a power light-emitting diode (1) having a metallic base (2) to a metallic heat-radiating element (3), according to which the base (2) of the light-emitting diode is fixed to the radiating element (3) by laser spot welding (11).
Abstract:
Embodiments of the invention include an integrated circuit package and methods for its construction. An integrated circuit package of the invention includes a die attach pad and a plurality of lead pads. An integrated circuit die is mounted with the front side of the die attach pad and electrically connected to the plurality of lead pads. Additionally, the backside of the die attach pad includes a pattern of mesas formed thereon. Each of the mesas is configured such that they have a top surface area that is substantially the same size as the surface area of the lead pads. A contact layer of reflowable material is formed on the top surface of the mesas and the lead pads, forming an integrated circuit package with an improved contact layer.
Abstract:
A metal wiring board includes a metal plate as a substrate. The metal plate is stamped in a predetermined wiring pattern including wiring portions and terminal portions. The metal plate has soldering areas prepared for electrical connection and non-soldering areas coated with solder resist on its surface.
Abstract:
A method and circuit structure for mounting a leadless IC package to a substrate having a thermal pad on a first surface thereof, a plurality of contact pads surrounding the thermal pad, and one or more plated vias in the thermal pad. The leadless package is attached to the substrate with solder that thermally connects the package to the thermal pad. To prevent solder flow into the plated vias during reflow, a solder mask is provided on the first surface of the substrate, at least a portion of which is deposited on the thermal pad and surrounds the plated vias but does not block the plated vias. The solder mask portion defines a barrier between the solder and the plated vias, but allows for outgassing through the vias during solder reflow.
Abstract:
A semiconductor device includes a circuit board, a semiconductor element that is mounted on an upper surface of the circuit board and has an electrode terminal, and a sealing resin for sealing a periphery of the semiconductor element that is mounted on the upper surface of the circuit board. The circuit board includes a plurality of conductive members and an insulating substance for binding and fixing the plurality of conductive members. Each of the plurality of conductive members includes a conductive material formed integrally from the upper surface through the lower surface of the circuit board, and an insulating material covering an outer circumference of the conductive material. The conductive material of at least one conductive member of the plurality of conductive members is exposed to the upper surface of the circuit board. The electrode terminal of the semiconductor element is electrically connected to the conductive material of the conductive member exposed to the upper surface of the circuit board via a connecting member.
Abstract:
The present invention relates to an arrangement concerned with multilayer printed circuit boards that enables cavities in said board to be utilized more effectively. A substrate (14) that includes a chip (16) which is connected to the microstrips (17) of the substrate (14) by means of bonding wires (18) is placed on a bonding shelf (13) with the chip (16) orientated towards the bottom of the cavity (6). The microstrips (17) on the substrate (14) therewith come into contact with the microstrips (12) on the bonding shelf (13). The earth plane (15) of the substrate (14) is connected to the upper earth plane (2) by means of bonding wires (19). The arrangement means that the cavity (16) is utilized effectively, at the same time as the substrate (14) protects the underlying chips (7, 16) against mechanical influences.
Abstract:
A semiconductor package and method for fabricating the package are provided. The package includes a semiconductor die and a heat sink in thermal communication with the die. The heat sink includes one or more pad structures adapted to form bonded connections, and thermal paths to contacts on a substrate. The method includes forming multiple heat sinks on a frame similar to a lead frame, and etching or stamping the pad structures on the heat sink. The frame can then be attached to a leadframe containing encapsulated dice, and the assembly singulated to form separate packages. The packages can be used to form electronic assemblies such as circuit board assemblies and multi chip modules.
Abstract:
Fabrication of a semiconductor device, with an improved level of exposure of the rear surface of a die pad is enabled during the fabrication of which deformation of a die pad in a resin-encapsulating step is prevented from occurring, and which can be mounted on a printed wiring board with a sufficient soldering strength. In a resin-encapsulated semiconductor device in which a semiconductor element is placed on the front surface of a die pad of a lead frame including: the die pad; and support bars of the die pad that protrude outwardly from sides of the die pad, the semiconductor element and its periphery are encapsulated with a resin material while the rear surface of the die pad is exposed to the external environment, a groove is formed on the rear surface of the support bar so that the groove traverses the support bar in the neighborhood of the boundary between the support bar and the die pad along a direction intersecting a protruding direction of the support bar. The groove may be formed on the front surface of a support bar.
Abstract:
A surface mount area-array integrated circuit package is disclosed. The package consists of a package substrate having conductive vias and internal and external conductive traces, a semiconductor die electrically and mechanically connected to the top surface of package substrate, an area-array of conductive surface mount terminations electrically and mechanically connected to the bottom of the package substrate, and at least one adhesive mass. The at least one adhesive mass is located on the bottom of the package substrate and replaces the conductive terminations in the area(s) where the joint strain energy density is calculated to be the greatest. When mounted on a substrate, the at least one adhesive mass adheres the package to the substrate. Increased mechanical and electrical reliability is thus achieved.