Abstract:
A technique capable of achieving both improvement of mounting density and noise reduction for a semiconductor device is provided. An LSI mounted on a printed wiring board comprises a grounding BGA ball and a power BGA ball to get power supply from the printed wiring board, and the grounding BGA ball and the power BGA ball are arranged closely to each other. A decoupling capacitor is mounted on the printed wiring board and has a first terminal and a second terminal. The grounding BGA ball and the first terminal are connected by a first metal electrode plate, and the power BGA ball and the second terminal are connected by a second metal electrode plate. The first metal electrode plate and the second metal electrode plate interpose a dielectric film having a thickness equal to or smaller than 1 μm therebetween.
Abstract:
The present invention provides a technique which, without causing two problems, i.e., (1) increased number of power supply/grounding pins and (2) increased power feed line inductance, prevents the noise causing a problem in a control circuit, from becoming routed around and induced into an output buffer. More specifically, the above can be realized by using either of two methods: (A) providing an on-chip bypass capacitor for the control circuit and isolating a power feed route of the control circuit from that of the output buffer in an AC-like manner, or (B) designing electrical parameters (inserting resistors) such that the oscillation mode of any electrical parameter noise induced into the power feed routes will change to overdamping.
Abstract:
A semiconductor module comprises a first semiconductor device, a second semiconductor device and a reference voltage supplying circuit. The first semiconductor device comprises a first electrode. The second semiconductor device comprises a second electrode. The reference voltage supplying circuit is for supplying a reference potential to the first electrode and the second electrode and for suppressing a noise to be transferred between the first electrode and the second electrode.
Abstract:
There is the problem that since C/A signals in a DIMM are distributed to respective DRAMs through a register in the DIMM and DQ signals are wired directly from terminals in the DIMM, their timing is difficult to synchronize. The register for speeding up the C/A signals of the DIMM that operates with high speed is provided, and a wiring from the register is set to a daisy-chain wiring. Then, by a timing adjustment circuit provided in the DRAM, a wiring delay time difference between the C/A signals and the clock signals, which are different depending on positions of the DRAMs, is such that the sum of a delay time from the register to each DRAM and a delay amount due to the timing adjustment circuit is made equal to a delay time of the farthest DRAM.
Abstract:
A memory module bus system using a plurality of directional couplers to permit high-density packaging. A wiring line (main line) extending from a main controller and cooperating with a sub coupling line to form a directional coupler is open-ended or short-circuited to ensure that a forward wave and a reflection wave can be used to generate signals in opposite directions of the directional coupler. Memory modules are connected to opposite ends of the sub coupling line. The line length of the coupler can be half the pitch between the memory modules.
Abstract:
In ultrahigh speed data transfer, a drive pulse is attenuated due to a skin effect and a dielectric loss, and a tail generated by a sub coupler extends as the drive pulse propagates on the main line. For that reason, an intersymbol interference becomes large, which causes jitters. In a memory system to which a plurality of DRAM memory modules are connected, in order to transfer data at high-speed, directional couplers are wired between a main controller and each of the modules, and the coupling lengths become longer with farther ends, thereby suppressing jitters. The directional couplers are wired between the main controller and each of the modules, and the coupling lengths are made longer with the farther ends with the results that the generated signal amounts are made constant, and jitters of the wiring and receiver delay are suppressed.
Abstract:
In each of the information processing apparatuses connected to each other via a network, there is arranged a quality of service (QOS) table to which functions and performance thereof are registered. When an information processing apparatus is additionally linked with the network, a QOS table thereof is automatically registered to a local directory of the network such that an agent converts the contents of the QOS table into service information to be supplied via a user interface to the user. Thanks to the operation, information of functions and performance of each information processing apparatus connected to the network is converted into service information for the user. Consequently, the user can much more directly receive necessary services.
Abstract:
There is provided a gap coupling type bus system, which makes it possible to mutually transfer data between all the modules connected to the bus. The gap coupling type bus system comprises for at least three modules, each module being provided with at least one sending/receiving circuit for sending and receiving a signal: at least three signal lines (21-26) respectively connected to the at least three modules (11-16); and terminating resistors (31-36) connected to respective signal lines at the other ends of the signal lines, each terminating resistor having generally same value as characteristic impedance of the signal line. Those at least three signal lines (21-26) have portions (1-2, 1-3, 2-3, . . . ) laid in parallel with one another with a predetermined gap, correspondingly to every combination of different two modules out of those at least three modules (11-16).
Abstract:
A source-clock-synchronized memory system having a large data storage capacity per memory bank and a high mounting density. The invention includes a memory unit having a first memory riser board B1 mounted on a base board through a first connector C1 and a second memory riser board B2 mounted on the base board BB through a second connector C2. The first memory riser board has a plurality of first memory modules mounted on the front surface thereof and the second memory riser board has a plurality of second memory modules mounted on the front surface thereof. The first and second memory riser boards are arranged in such a way that the back surface of the first memory riser board faces the back surface of the second memory riser board. The invention further includes a board linking connector for connecting signal lines on the first memory riser board to corresponding signal lines on the second memory riser board.
Abstract:
It is an object of the present invention to provide an active-line inserted/withdrawn functional circuit board, a data transfer system and a computer system which systems allow the functional circuit board to be inserted and withdrawn with signal lines remaining in an active state while achieving a high speed data-transfer of a bus, and the reliability to be enhanced by eliminating malfunctions which occur particularly during the insertion of a functional circuit board. The data transfer system or the computer system comprising: a functional circuit board having a functional circuit, a pre-charge resistor and a switching element connected in parallel to an input/output signal path of the functional circuit and a switching control means for controlling the conduction of the switching element through synchronization with a delayed clock signal resulting from delaying a bus clock signal for use in data transfers through the bus by a time shorter than a bus-clock cycle time of the bus clock signal; and a connector provided on an input/output end of the parallel connection of the pre-charge resistor and the switching element, whereby the functional circuit board can be inserted and withdrawn to and from the bus.