Abstract:
A material for insulating film suitable as an interlayer insulating material for a semiconductor device, from which an insulating film is formed by chemical vapor deposition, and an insulating film formed from such a material and a semiconductor device employing an insulating film, are provided.A material for insulating film comprising an organosilicon compound which is one of an organosilane compound in which a secondary hydrocarbon group and an alkenyl group, or an alkenyl group, is directly bonded to a silicon atom, or an organosiloxane compound in which a secondary hydrocarbon group and/or an alkenyl group is directly bonded to a silicon atom, represented by the formulae (1) to (4), from which an insulating film is formed by chemical vapor deposition of the organosilicon compound:
Abstract:
A method of dispersing fine particles in a spray including the steps of providing a liquid carrier having a critical point and fine particles of at least one material. The fine particles are dispersed in the liquid carrier. A supercritical carrier containing dispersed particles is created by driving the liquid carrier containing dispersed fine particles above the critical point. The pressure of the supercritical carrier containing dispersed particles is reduced thereby forming a vapor carrier containing dispersed particles therein. The vapor carrier containing dispersed fine particles is then discharged.
Abstract:
A vapor deposited film is formed on a base material surface by a plasma CVD method where an organic metal compound and an oxidizing gas are used as a reactive gas. The vapor deposited film has three sections of a base material side adhesive layer having 5% or more carbon, a barrier intermediate layer having less than 5% carbon, and a surface protection film having 5% or more carbon, by element concentration with respect to the total amount of three elements of a metal element (M), oxygen (O) and carbon (C) derived from the organic metal compound. The vapor deposited film has excellent adhesiveness to the base material, and has excellent resistance to water, especially to alkaline aqueous solutions, as well.
Abstract:
A microwave processing device/system can create strong temperature gradients in biodegradable polymer material. Novel physical phenomena caused by the heated particles cause local changes in viscosity and flow, leading to high mass transport and current densities in activated polymer matrix materials and to dramatically shorter reaction times and solvent-free reaction conditions. Advancements in the process speed and quality of packaging films in general can be achieved by increasing the polymeric amorphous to crystalline ratio, especially with regard to the claimed methods for manufacturing and sealing biodegradable packaging films. Micron-size particles or nanoparticles in the processed materials can interact with microwaves of different frequencies and intensities to create intentionally varied local material property changes to create an tunable flexible packaging product that is sustainable and “green.” Related systems, apparatus, methods, and/or articles are also described.
Abstract:
A delivery system (10) for delivering species (12) to a processing (chamber 14) comprises a species container (16) for containing species supplied from a source (18) of liquid species. Heating means (44) is provided for heating the liquid species. The heating means is connected by conductors (46) to a heating control unit (48) which is operable by control means (30) to control evaporation of liquid species from container (16). Flow guide means (22, 24) guide flow of evaporated species to a processing chamber.
Abstract:
Present embodiments are directed to a system and method for condensing and curing organic materials within a deposition chamber. Present embodiments may include condensing an organic component from a gas phase into a liquid phase on a target surface within the deposition chamber, wherein the gas phase of the organic component might be mixed with an inert gas. Further, present embodiments may include solidifying the liquid phase of the organic component into a solid phase within the deposition chamber using an inert plasma formed from the inert gas.
Abstract:
A container-treatment method, of the type in which the container (12) is disposed inside a chamber (16) which defines a cavity (18) outside the container (12) and which is connected to a Vacuum pumping circuit (50), the interior of the container (12) being connected to the pumping circuit (50). The method includes a preliminary pumping step (E1) which is followed by a treatment step (E2). The preliminary step (E1) includes the following successive phases, namely: an external pumping phase (P1) which produces a drop in the pressure inside the cavity (18) only; and an internal pumping phase (P2) which produces a drop in the pressure inside the container (12) only. A machine used to implement the method is also disclosed.
Abstract:
A method for producing polymer coatings by surface initiated polymerization from a plasma deposited coating is provided. The modification of surfaces by polymer attachment is a versatile and efficient means of controlling interfacial properties, such as surface energy (i.e. wetting behavior), permeability, bio-activity, and chemical reactivity. The present invention provides a method whereby a plasma deposited coating is applied to a substrate and the polymer coating formed by surface initiated polymerization is formed on the coating rather than the substrate itself. This means that the growth of the polymer using the grafting from procedure can be performed efficiently and independently of the substrate from.
Abstract:
The invention relates to an activated metallic, semiconductor, polymer, composite and/or ceramic substrate, the substrate being bound through a mixed or graded interface to a hydrophilic polymer surface that is activated to enable direct covalent binding to a functional biological molecule, the polymer surface comprising a sub-surface that includes a plurality of cross-linked regions, as well as to such activated substrates that have been functionalised with a biological molecule and to devices comprising such functionalised substrates. Such substrates can be produced by a method comprising steps of: a. exposing a surface of the substrate to any or more of (i) to (iii): (i) plasma ion implantation with carbon containing species; (ii) co-deposition under conditions in which substrate material is deposited with carbon containing species while gradually reducing substrate material proportion and increasing carbon containing species proportion; (iii) deposition of a plasma polymer surface layer with energetic ion bombardment; incubating the surface treated according to step (a) with a desired biological molecule.
Abstract:
The present invention relates to a method of coating fluorocarbon or hydrocarbon on the surface of a workpiece using atmospheric pressure plasma. More particularly, the present invention relates to a method of coating hydrocarbon or fluorocarbon on the surface of a workpiece using plasma generated under atmospheric pressure such that the workpiece can have a hydrophobic or super-hydrophobic surface.The method of coating a surface of a workpiece with fluorocarbon to be hydrophobic or super-hydrophobic according to the present invention comprises the steps of generating first atmospheric pressure glow plasma by supplying a reaction gas into a discharge space formed between a first electrode and a second electrode, the reaction gas containing hydrogen gas, fluorocarbon gas and inert gas, the first and second electrodes being connected to an RF power supply of an atmospheric pressure plasma generator; and approaching the workpiece to the first electrode downstream of a reaction gas flow passing through the discharge space, such that the plasma created in the discharge space is transferred into a space between the first electrode and the workpiece to generate a second atmospheric pressure glow plasma therein, whereby a fluorocarbon coating layer can be formed on the surface of the workpiece.