Abstract:
A MEMS (microelectromechanical systems) structure comprises a MEMS wafer. A MEMS wafer includes a cap with cavities bonded to a structural layer through a dielectric layer disposed between the cap and the structural layer. Unique configurations of MEMS devices and methods of providing such are set forth which provide for, in part, creating rounded, scalloped or chamfered MEMS profiles by shaping the etch mask photoresist reflow, by using a multi-step deep reactive ion etch (DRIE) with different etch characteristics, or by etching after DRIE.
Abstract:
Methods and apparatus for forming MEMS devices. An apparatus includes at least a portion of a semiconductor substrate having a first thickness and patterned to form a moveable mass; a moving sense electrode forming the first plate of a first capacitance; at least one anchor patterned from the semiconductor substrate and having a portion that forms the second plate of the first capacitance and spaced by a first gap from the first plate; a layer of semiconductor material of a second thickness patterned to form a first electrode forming a first plate of a second capacitance and further patterned to form a second electrode overlying the at least one anchor and forming a second plate spaced by a second gap that is less than the first gap; wherein a total capacitance is formed that is the sum of the first capacitance and the second capacitance. Methods are disclosed.
Abstract:
In a method of producing trench-like depressions (24) in the surface of a wafer (27), particularly a silicon wafer, by plasma etching, in which the depressions (24) are produced by alternate passivation and etching, each depression (24) in its final geometry is provided with a protective layer (30) of the polytetrafluoroethylene type.
Abstract:
Embodiments of the invention relate to a substrate etching method and apparatus. In one embodiment, a method for etching a substrate in a plasma etch reactor is provided that includes a) depositing a polymer on a substrate in an etch reactor, b) etching the substrate using a gas mixture including a fluorine-containing gas and oxygen in the etch reactor, c) etching a silicon-containing layer the substrate using a fluorine-containing gas without mixing oxygen in the etch reactor, and d) repeating a), b) and c) until an endpoint of a feature etched into the silicon-containing layer is reached.
Abstract:
Vias are formed in a substrate using an etch process that forms an undercut profile below the mask layer. The vias are coated with a conformal insulating layer and an etch process is applied to the structures to remove the insulating layer from horizontal surfaces while leaving the insulating layers on the vertical sidewalls of the vias. The top regions of the vias are protected during the etchback process by the undercut hardmask.
Abstract:
Methods for fabricating of high aspect ratio probes and deforming micropillars and nanopillars are described. Use of polymers in deforming nanopillars and micropillars is also described.
Abstract:
Methods for fabrication of high aspect ratio micropillars and nanopillars are described. Use of alumina as an etch mask for the fabrication methods is also described. The resulting micropillars and nanopillars are analyzed and a characterization of the etch mask is provided.
Abstract:
A method of anisotropic plasma etching of a silicon wafer, maintained at a temperature from −40° C. to −120° C., comprising alternated and repeated steps of: etching with injection of a fluorinated gas, into the plasma reactor, and passivation with injection of silicon tetrafluoride, SiF4, and of oxygen into the plasma reactor, the flow rate of the gases in the plasma reactor being on the order of from 10% to 25% of the gas flow rate during the etch step.
Abstract:
A method of removing a polymeric coating from sidewalls of an etched trench defined in a silicon wafer is provided. The method comprises etching the wafer in a biased plasma etching chamber using an O2 plasma. The chamber temperature is in the range of 90 to 180° C.
Abstract:
A method of through-etching a substrate that is simplified and by which the flow of ions can be kept to be regular during a plasma dry etching process, is provided. According to this method, a buffer layer is formed on a first plane of the substrate, a metal layer is formed on the buffer layer, an etching mask pattern is formed on a second plane opposite to the first plane, and the substrate is through-etched with the etching mask pattern as an etching mask. Preferably, the substrate is formed of a single-crystal silicon, the buffer layer is formed of silicon dioxide, and the metal layer is formed of aluminum.