Abstract:
A fast curing, high solids coating composition that is adapted for use as an automotive topcoat and which upon curing forms a hard, glossy, durable coating exhibiting excellent resistance to solvents and water. The coating composition contains greater than about 60 percent by weight of nonvolatile solids and, exclusive of pigments, solvents and other nonreactive components, consists essentially of:(A) a bifunctional copolymer bearing hydroxy functionality and pendant epoxy functionality, having a number average molecular weight (M.sub.n) of between about 1500 and about 10,000 and a glass transition temperature (Tg) of between about -25.degree. and about 70.degree.:(B) a reactive catalyst comprising at least one hydroxy functional organophosphate ester selected from certain mono-and diesters of phosphoric acid;(C) an amine-aldehyde crosslinking agent; and(D) optionally, a hydroxy functional additive. The hydroxy functional organophosphate ester is included in the composition in an amount sufficient to provide between about 0.67 and about 1.4 equivalents of acid functionality in copolymer (A), and the amino crosslinking agent is included in the composition in an amount sufficient to provide at least about 0.4 equivalents of nitrogen crosslinking functionality for each equivalent of hydroxy functionality included in the composition.
Abstract:
A method of manufacturing a mineral fibre thermal insulation product comprises the sequential steps of:
Forming mineral fibres from a molten mineral mixture; Spraying a substantially formaldehyde free binder solution on to the mineral fibres, the binder solution comprising: a reducing sugar, an acid precursor derivable from an inorganic salt and a source of nitrogen; Collecting the mineral fibres to which the binder solution has been applied to form a batt of mineral fibres; and Curing the batt comprising the mineral fibres and the binder which is in contact with the mineral fibres by passing the batt through a curing oven so as to provide a batt of mineral fibres held together by a substantially water insoluble cured binder.
Abstract:
A thermosetting coating composition includes a hydroxyl group-containing resin (A), a blocked polyisocyanate curing agent (B), and an amine compound (C) represented by the formula (1). In the formula (1), R1 to R5 each independently represents a hydrogen atom or an organic group having one or more carbon atoms. The organic group may contain one or more atoms selected from the group consisting of oxygen atoms, nitrogen atoms, sulfur atoms, and halogen atoms.
Abstract:
The invention provides a coating agent for a flow passage which comprises a copolymer containing a recurring unit which contains an organic group of the formula (a) wherein Ua1 and Ua2 are defined herein, and a recurring unit which contains an organic group of the formula (b) wherein Ub1, Ub2, Ub3, and An− are defined herein. The invention also provides a flow passage device having the coating agent for a flow passage on at least part of an inner surface of a flow passage, a platelet-producing flow passage device and a method for manufacturing the same.
Abstract:
The present invention provides a coating composition which cures at low temperatures to form a cured film having high solvent resistance. The present invention provides a low-temperature-curable coating composition which comprises (A) a film-forming polymer having a hydrogen-donating functional group that has a heteroatom which bonds covalently to a hydrogen atom, (B) a film-forming polymer having a specific hydrogen-accepting functional group that has a heteroatom to which no hydrogen atom bonds covalently, and (C) a non-basic volatile solvent selected from the group consisting of a non-basic volatile solvent (C-1) having, in the molecule, both a heteroatom that bonds covalently to a hydrogen atom and a heteroatom that does not bond covalently to a hydrogen atom; a mixture of a non-basic volatile solvent (C-2) having, in the molecule, a heteroatom which bonds covalently to a hydrogen atom and a non-basic volatile solvent (C-3) having, in the molecule, a heteroatom to which no hydrogen atom bonds covalently; and combinations thereof.
Abstract:
An un-reacted substantially formaldehyde free curable binder solution for binding loose matter consists essentially of a solution obtainable by dissolving a reducing sugar, an ammonium salt acid precursor, optionally a carboxylic acid or a precursor thereof and optionally ammonia in water.
Abstract:
An anchor layer formation composition, a pressure-sensitive adhesive layer-attached optical film, and an image display device are provided, in which the composition includes an oxazoline group-containing polymer and an ionic compound including a cation component and a sulfonyl group-containing anion component and is capable of forming an anchor layer that can improve the adhesion between a pressure-sensitive adhesive layer and an optical film when interposed therebetween, the pressure-sensitive adhesive layer-attached optical film has high durability and good reworkability and allows the pressure-sensitive adhesive layer to resist chipping, and the image display device has the pressure-sensitive adhesive layer-attached optical film.
Abstract:
The present disclosure is directed to a waterborne coating composition having neutral pH that is low foaming and forms dry coating layer that has high hardness and high gloss. This disclosure is further directed to a coating composition comprising a crosslinking component comprising: (a) one or more alkylated melamines that are essentially unreactive to a polyisocyanate; and (b) a polyisocyanate. The coating composition can be particularly suitable for vehicle coatings and other industrial or consumer applications.
Abstract:
A method of refurbishing a surface of a component for an electronic device, includes: contacting a surface to be refurbished with an etching composition to provide a treated surface; optionally firstly cleaning the treated surface by contacting with a glass cleaner to provide a firstly cleaned surface; optionally secondly cleaning the firstly cleaned surface by contacting the firstly cleaned surface with a grease remover to provide a secondly cleaned surface; optionally contacting the secondly cleaned surface with an activator to provide an activated surface; disposing a coating resin on the treated and optionally activated surface; and curing the coating resin to provide a coated surface to refurbish the surface of the electronic device, wherein the coating resin comprises a by droxyl functional dendritic polymer; optionally an acrylic polyol; and a plurality of metal oxide nanoparticles optionally encapsulated in a hydroxyl functional polymer or a hydroxyl functional fluorosurfactant.
Abstract:
An un-reacted substantially formaldehyde free curable binder solution for binding loose matter consists essentially of a solution obtainable by dissolving a reducing sugar, an ammonium salt acid precursor, optionally a carboxylic acid or a precursor thereof and optionally ammonia in water.