Abstract:
A valve-lift device for the variable control of gas-exchange valves of an internal combustion engine is provided. The device includes a pivotable lever that is capable of being driven by a camshaft, the pivotable lever having an axis of rotation which can be displaced in a slotted-link track fixed to the housing, and a valve actuation means. The pivotable lever has, at one end, a roller which is driven by a camshaft and, at its other end, a slotted-link roller which is moved along a working curve in a slotted link, the slotted link being designed as an engagement surface of a valve actuation means. A center of rotation of the lever is provided between the roller and the slotted-link roller and the center of rotation of the rocker lever and a supporting axis of the valve actuation means is arranged on a vertical axis in an operating position. In order to set a valve lift, an axis of rotation is displaced in a slotted-link track fixed to the housing.
Abstract:
A device and control method for actuating valves of a motor vehicle internal combustion engine including at least a controlled hydraulic actuator actuating the associated valve that is provided in the form of a cylinder. A mobile piston connected to the valve delimits two opposite hydraulic pressure chambers each supplied with an incompressible fluid and pressure regulated by a control unit such that the pressure prevailing in one of the chambers is alternately higher/lower than that which prevails in the other chamber to actuate the valve. Each pressure chamber of the cylinder is capable of communicating with a corresponding actuating hydraulic pressure source, which includes a pneumatic return mechanism for the fluid.
Abstract:
An internal combustion engine includes at least one rotating, oscillating or reciprocating piston (20, 21) in a cylinder (11, 12). Each piston (20, 21) defines with the cylinder (11, 12) a combustion chamber (35). Each combustion chamber (35) has at least one inlet valve (36) and one exhaust valve (37), and a mechanism (40) to periodically open the inlet and exhaust valves. The valves are closed by a gas spring (80, 82) having a closing force proportional to the speed of the engine.
Abstract:
An internal combustion engine comprising at least one pair of pistons (20, 21) rotating, oscillating or reciprocating in cylinder assemblies (11, 12) joined by a crankcase (13), each piston (20, 21) being driven by a crankshaft housed in the crankcase (13), the crankcase (13) including an inlet port (63) for entry of an air fuel mixture and an outlet port (65) for transfer of compressed air fuel mixture, each cylinder (11, 12) having a combustion chamber (35) and at least one inlet (36) and at least one exhaust (36) valve port communicating with the combustion chamber (35), the inlet valve port (36) being in communication with the crankcase (13) via the crankcase outlet port (65) whereby the engine is adapted to run on a four stroke cycle with the underside of the piston (20, 21) pressurising the air fuel mixture in the crankcase (13) and causing transfer of the pressurised air fuel mixture to the combustion chamber (35) via the crankcase outlet port (65) and inlet valve port (36).
Abstract:
In a valve drive system, a plurality of valves are disposed in skewed relation to a cylinder. The valves each are driven by respective rocker arms supported for rotation on a cylinder head via respective rocker pins and cam shafts having three-dimensional cams for engaging these rocker arms. The rocker pins are individually supported on the cylinder head between the cam shafts.
Abstract:
In a valve drive system, a plurality of intake or exhaust valves are disposed radially in a cylinder, and the intake or exhaust valves each are driven by respective rocker arms supported for rotation on a cylinder head via a rocker pin and an intake or exhaust cam shaft having three-dimensional cams for engaging these rocker arms. A boss of the rocker arm is coupled to the rocker pin for tilting movement in a direction perpendicular to the axis of the rocker pin. The rocker arm is tiltable with respect to the rocker pin to follow the three-dimensional cam surface. The cam surface can be in line contact with the sliding surface of the rocker arm throughout its circumference.
Abstract:
An internal combustion engine having an engine camshaft driven air compressor. The air compressor supplies air under pressure through separate regulated and controlled circuits to air springs for urging the poppet valves of the engine to a closed position and engine driven accessories, such as a variable throttle mechanism and/or an air actuator for controlling for a change speed transmission.
Abstract:
A two position straight line motion actuator utilizes a double ended pneumatic spring to provide most of the energy required to transit back and forth between the two positions. The actuator is held in its initial position against the force of the pneumatic spring by hydraulic pressure applied to a latching piston. Transition from the initial or first position to the second position is initiated by opening a flow path around the latching piston to cancel the effects of the high pressure latch, thus allowing the air spring to power the actuator to its second position. As the actuator moves toward the second position, the second air spring dampens actuator motion converting the kinetic energy of the actuator moving portion into potential energy in the form of highly compressed air, thus cocking the second air spring. Return of the actuator is blocked by the fluid latch. Upon command, a valve opens the flow path around the latch, allowing the latch to release the actuator to return to its initial position. Supplemental hydraulic pressure is valved into the latching chamber during the latter part of travel of the moving portion of the actuator to overcome system friction and to assure that the actuator moves fully to its initial position. Both the speed and the distance traveled by the moving actuator portion may be controlled by pre-pressurization of the air chambers.
Abstract:
An electronically controllable hydraulically powered asymmetrical valve actuating mechanism for use in an internal combustion engine of the type having engine intake and exhaust valves with elongated valve stems is disclosed. The actuator is a bistable electronically controlled hydraulically powered transducer having an armature including a power piston which is reciprocable between first and second positions along with a hydraulic arrangement for powering the armature from a first (engine valve closed) position to a second position. A bistable control valve is operable in one of its stable states to supply high pressure hydraulic fluid to one face of the piston to power the armature and in the other of its stable states to relieve the high pressure fluid from the piston. The mechanism has a compressible resilient arrangement such as a coil spring or a chamber in which air is compressed during motion of the armature from the first position to the second position. This compression of the air not only slows armature motion as it nears the second position, but also provides a potential energy store for powering the armature back to its initial position. The control valve remains in said one stable state to temporarily prevent reversal of armature motion when the motion of the armature has slowed to a stop, the control valve returning to the other of its stable states on command to allow the spring or air compressed in the chamber to return the armature to the first position.