Abstract:
A photoelectric converting module includes a circuit board, at least one light emitting/receiving unit and an optical coupler both mounted on the circuit board. Each light emitting/receiving unit includes a light emitter and a light receiver, the light emitter and the light receiver each include at least one positioning projection. The optical coupler includes positioning parts to engage with the positioning projections for aligning the optical coupler with the light emitting/receiving unit precisely.
Abstract:
A sunlight collecting device provided in the present invention includes a lens substrate, a plurality of Fresnel lens, a connector substrate, a plurality of optical fiber connectors, and a light-tracking substrate. The lens substrate has a plurality of circular openings. The Fresnel lenses correspond to the circular opening and are disposed on the lens substrate. The connector substrate is disposed parallel to the lens substrate and away from the lens substrate with a focal length. The optical fiber connectors are adjustably disposed on the connector substrate. The light-tracking substrate is disposed between the lens substrate and the connector substrate for simultaneously rotating the lens substrate and the connector substrate such that the Fresnel lenses are directly opposite to the sunlight. An LCD using the sunlight as a backlight source is further provided in the present invention.
Abstract:
A thermal absorption structure of a radiation thermal detector element may include an optically transitioning material configured such that optical conductivity of the thermal absorption structure is temperature sensitive and such that the detector element absorbs radiation less efficiently as its temperature increases, thus reducing its ultimate maximum temperature.
Abstract:
An optical system (120) for detecting optical aberrations of light from an object (101), the optical system comprising: a reference light-source (102) providing collimated reference light; an optical element (212) configured to focus at least one collimated light beam incident on the optical element (212) to a plurality of focal points in a conjugate object plane (214), the optical element (212) being arranged in an optical path between the reference light-source (102) and the object (101) for transmitting a plurality of reference light beams towards the object (101); and a wavefront sensor (112) configured to detect a property indicative of an optical aberration of light incident on the wavefront sensor; wherein the optical element (212) is further arranged to transmit a plurality of reflected guide star light beams resulting from reflection of the reference light beams at the object (101) towards the wavefront sensor (112).
Abstract:
A dual-function optical system including a secondary optical path incorporated, off-axis, within a primary optical path of the system and sharing a single aperture and at least some of the optical components with the primary optical path. In one example, an optical system includes an optical telescope including a plurality of mirrors configured to receive and direct first light rays through an entrance aperture of the optical system along a primary optical path, a detector positioned behind the optical telescope in the primary optical path and configured to receive the first light rays from the optical telescope, and an illuminator positioned behind the optical telescope and configured to produce second light rays and to direct the second light rays to the optical telescope, the optical telescope being further configured to transmit the second light rays along a secondary optical path through the entrance aperture of the optical system.
Abstract:
The optical system (1) is intended to measure the bidirectional reflectance and/or transmittance distribution function BRDF, BTDF and BSDF of a surface (10) of at least a portion of an object (7), the system comprising successively: an aplanatic lens (2) having an opening angle, the absolute value of which is comprised between 45° and a value strictly lower than 90°, a converging field lens (3) downstream of the plane P, an image pickup lens (4), the field angle of which is higher than or equal to the convergence angle of the scattered light beams emerging from the field lens, and a video sensor (5), the aplanatic lens (2), the converging field lens (3), the image pickup lens (4) and the video sensor (5) being arranged so as to allow a conjugation C1 between the surface (10) and the entrance pupil of the image pickup lens (4) and a conjugation C2 between an intensity pattern and the video sensor (5).
Abstract:
The present invention provides a spectral apparatus for spectrally separating light including a predetermined wavelength, including a slit that the light enters, a first optical system configured to collimate the light from the slit, a transmissive type diffraction element configured to diffract the light from the first optical system, and a second optical system including a first mirror configured to reflect the light diffracted by the transmissive type diffraction element, and a second mirror configured to reflect the light reflected by the first mirror and diffracted by the transmissive type diffraction element, and configured to make the light reciprocally travel between the first mirror and the second mirror via the transmissive type diffraction element.
Abstract:
This optical system includes: a device (106) for generating a plane light wave, called a collimated light wave (OLcol); and a device (114) for deviating the collimated light wave so as to provide a light wave, called a test light wave (OLtest), the deviating device (114) having an adjustable focal length.
Abstract:
An in-line laser beam waist analyzer system includes an optical prism that picks off a portion of a second surface reflection from either a laser processing focus lens or a protective debris shield for the processing lens and directs that focused light to a pixelated detector. This provides real time monitoring of the focused laser beam while it is processing material by welding, cutting, drilling, scribing or marking, without disrupting the process.
Abstract:
A laser output measuring apparatus in which an optical separator is disposed in a position that is rotated by a predetermined angle about an optical axis of a laser beam converged by a lens, and further rotated by a predetermined angle about the optical axis of the laser beam and a straight line perpendicular to an incident surface of the laser beam.